
AD'-A257 442

NAVAL POSTfGRADUATE SCHOOL 09

Monterey, California

DTICJ~SELECTE f
NOV23 199213

A '

THESIS
DESIGN AND IMPLEMENTATION

OF A
GROUP MEMBERSHIP PROTOCOL

by

DEVALLA RAGHURAM

September, 1992

Thesis Advisor: Shridhar B. Shukia
Second Reader: Douglas J. Fouts

Approved for public release; distribution is unlimited

92-29916



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKISGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIO0/DOWNGRADING SCHEDULE Approved for public release:
distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

ENV Academic Group (if applicable)

Naval Postgraduate School 3A Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943 Monterey. CA 939-13

8a. NAME OF FUNDING/SPONSORIIG 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT N0. gO. go. ACCESSION NO.

11. TITLE (Include Security Classification)

DESIGN AND IMPLEMENTATION OF A GROUP MEMBERSHIP PROTOCOL
12. PERSONAL AUTHOR(S)

Raghuram Devalla
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day) 15. PAGE COUNT

Master's Thesis FROM 09/90 TO 09/92 . September 1992 127
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U7nited States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SB-RUP SUB--GROUP Distributed processing, Group membership problem, Process groups.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
A group membership protocol ensures agreement and consistent commit actions among group members to maintain a sequence

of identical group views in spite of continuous changes, either voluntary or otherwise, in processors' membership status. In
asynchronous distributed environments, such consistency among group views must be guaranteed using messages over a network
which does not bound message delivery times. Assuming a network that only provides a reliable, FIFO channel between any pair
of processors, one approach to designing such a protocol is to centralize the responsibility to detect changes, ensure agreement.
and commit them consistently in a single manager process. This approach is complicated by the fact that a protocol to elect a
new manager with a consistent membership proposal must be executed when the manager itself fails. In this thesis, a membership
protocol based on ordering of group members in a logical ring that eliminates the need for such centralized responsibility is presented.
Agreement and commit actions are token-based and the protocol ensures that no tokens are lost or duplicated due to changes in
membership. It is able to process continuous changes to the membership, does not depend upon any majority-based decisions,
and processes joins and departures identically. The cost of committing a change is always 2n point-to-point messages over FIFO
channels where n is the group size. The protocol correctness is proven in a formal framework. The implementation details for the
protocol to execute on a network of SUN workstations is presented. Detailed examples of the behavior of the protocol for various
sequences of changes to group membership is presented. The programs for various client-server communication patterns used for
interfacinz various functions are also presented.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

0] UNCLASSIFIED/UNLIMITED OlSAME AS RPT. 'DTIC USERS I N.CLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Shridhar B Shukla (008) 616-27641 Ec/Sh
DD FORM 1473, 84 MAR 83 APR edfition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

Previous editions are obsolete U NCL ASS IF I ED

i



Approved for public release; distribution is unlimited

Design and Implementation
of a

Group Membership Protocol

by

Raghuram Devalla
Scientist, DoD India

B.E, Indian Institute of Science. 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

Author: _ _ _ _ _ _ _ _ _ _

Raghuram Devalla

Approved by:

Shridhar B. Shukla, Thesis Advisor

'u o , Second Reader

w Pvrof. Mery Knor, Chairm an
Electronic Warfare Academic Group

ii



ABSTRACT

A group membership protocol ensures agreement and consistent commit actions

among group members to maintain a sequence of identical group views in spite of

continuous changes, either voluntary or otherwise, in processors' membership status.

In asynchronous distributed environments, such consistency among group views must

be guaranteed using messages over a network which does not bound message delivery

times. Assuming a network that only provides a reliable, FIFO channel between

any pair of processors, one approach to designing such a protocol is to centralize the

responsibility to detect changes, ensure agreement, and commit them consistently in

a single manager process. This approach is complicated by the fact that a protocol to

elect a new manager with a consistent membership proposal must be executed when

the manager itself fails. In this thesis, a membership protocol based on ordering

of group members in a logical ring that eliminates the need for such centralized

responsibility is presented. Agreement and commit actions are token-based and the

protocol ensures that no tokens are lost or duplicated due to changes in membership.

It is able to process continuous changes to the membership, does not depend upon any

majority-based decisions, and processes joins and departures identically. The cost of

committing a change is always 2n point-to-point messages over FIFO channels where

n is the group size. The protocol correctness is proven in a formal framework. The

implementation details for the protocol to execute on a network of SUN workstations

are presented. Detailed examples of the behavior of the protocol for various sequences fL

of changes to group membership is presented. The programs for various client-server

communication patterns used for interfacing various functions are also presented.............

D'7', Q-I
iii t S• VIo



TABLE OF CONTENTS

INTRODUCTION ............................. 1

A. BACKGROUND ............................ 1

B. OBJECTIVES OF THE STUDY ................... 2

C. THESIS ORGANIZATION ...................... :3

II. EXISTING APPROACHES ........................ 4

A. GROUP MEMBERSHIP PROBLEM ................ 4

1. Importance ................................... 4

2. System Classification ............................ 5

B. SYNCHRONOUS SYSTEMS ........................... 6

1. Periodic Broadcast Protocol ......................... 6

2. Attendance List Protocol ........................... 7

3. Robust Group Membership Algorithm .................. 7

C. ASYNCHRONOUS SYSTEMS .......................... 8

1. Failure Detection and Notification Protocol ............... 8

2. Protocol Based on Total Message Ordering ............... 10

3. Protocol Based on Rotating Token List ................. 11

4. ISIS Approach .................................. 12

III. GROUP MEMBERSHIP PROTOCOL ........................ 14

A. ASSUMPTIONS, OVERVIEW, AND DEFINITIONS .......... 15

1. Overview ........ ............................. 16

a. Processing of Individual Changes ................... 18

2. Definitions ..................................... 19

a. Group Membership Problem Definition .............. 19

iv



b. Logical Ring ................................ 20

c. Tokens ........ ............................ 21

d. Neighbor and Host Computation ................. "

B. THE MEMBERSHIP PROTOCOL ...................... 23

1. Status Change Detection and Agreement Initiation ... ...... 24

2. The Agreement Phase ....... ...................... 25

:3. The Commit Phase ............................... 27

a. Effects of a Commit Action ...................... 27

b. Ensuring an Identical Sequence of Commits ........... 28

C. CORRECTNESS OF THE PROTOCOL ................... 29

IV. IMPLEMENTATION OF THE PROTO,"OL ................... 35

A. PROTOCOL SOFTWARE DESIGN ...................... 35

1. Functions in the Protocol ....... .................... 35

2. Subcomponents of MP ............................ 37

B. DATA STRUCTURE DEFINITIONS ...................... 37

C. PROCESS SPECIFICATIONS .......................... 46

1. FIFO-Channel-Layer ............................. 46

2. Initiate-Departure ................................ 49

3. Initiate-Join .................................... 53

4. Agreement Process ............................... 54

5. Commit Process ................................. 56

6. TokenPool Manager ............................... 58

7. StatusTable Manager ............................. 61

8. GroupView Manager ............................. 61

9. Join Initial ........ ............................. 62

D. IMPLEMENTATION ON UNIX MACHINES ................ 63

V



1. Pipes ........ ................................ 64

2. F IFO s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3. Message Queues ................................. 66

4. Sockets ........ ............................... 68

.5. Transport Layer Interface ........................... 69

V. *AN EXAMPLE ....................................... 71

A. INITIAL CONDITIONS ....... ....................... 71

B. EXPLANATION OF THE EXAMPLE .................... 72

1. Failure of a Single Member .......................... 72

2. Join of a Single Member ...... ..................... 75

3. Multiple Failures and Joins ...... ................... 75

VI. CONCLUSIONS AND FUTURE DIRECTIONS ................. 81

A. CONCLUSIONS .................................... 81

B. FUTURE WORK ........ ........................... 81

APPENDIX A .............................................. 82

A. GROUPVIEW SERVER .............................. 82

B. TOKENPOOL SERVER .............................. 90

C. STATUS TABLE SERVER ............................. 97

D. COMMIT PROCESS SERVER .......................... 105

REFERENCES ............................................ 113

INITIAL DISTRIBUTION LIST ................................ 115

vi



LIST OF TABLES

4.1 PROCESSES AND THEIR FUNCTIONS ............... 39

4.2 DIFFERENT ACTION ORIENTED DATA STRUCTURES ..... 40

4.3 DIFFERENT TOKENS WITH THEIR TOKEN-TYPES ........ 45

5.1 SNAPSHOT OF INITIAL CONDITION ................ 73

5.2 SNAPSHOT AT THE END OF AGREEMENT PHASE ......... 74

5.3 SNAPSHOT WHEN ONLY p3 HAS COMMITTED ............ 74

5.4 SNAPSHOT WHEN ALL MEMBERS HAVE COMMITTED p2 ... 74

•5.5 SNAPSHOT BEFORE INITIATING AGREEMENT FOR A JOIN 76

5.6 SNAPSHOT WHEN P6 IS COMMITTED AT THE HOST Po .... 77

5.7 SNAPSHOT WHEN ALL MEMBERS HAVE COMMITTED p6 . . 77

5.8 SNAPSHOT SHOWING MULTIPLE AGREE TOKENS ......... 79

5.9 GROUPVIEW FOR SUCCESSIVE VIEW NUMBERS .......... 80

vii



LIST OF FIGURES

3.1 A Logical ring ........ ............................... 17

3.2 Algorithm for monitoring and agreement initiation .............. 25

3.3 Algorithm for reporting the status .......................... 23

3.4 Algorithm to initiate a join ............................... 26

3.5 Protocol for agreement tokens ....... ...................... 30

3.6 Protocol for committing a change .......................... 31

3.7 Protocol to process a commit token ......................... 31

4.1 Topmost view of MP interactions ....... .................... 36

4.2 MP process interactions ........ ......................... 38

4.3 Action-type message structure . ........................... 40

4.4 GroupView message structure ....... ...................... 41

4.5 Neighbor-Address structure ............................... 41

4.6 StatusTable message structure ............................. 41

4.7 Token structure ........ .............................. 42

4.8 TokenPool message structure ............................. 42

4.9 GroupView ......... ................................ 43

4.10 Status-Monitoring message structure ...... .................. 44

4.11 Status-Table ........ ................................ 44

4.12 TokenPool ........ ................................ 45

4.13 FIFO channel process .................................. 47

4.14 Send process ........................................ 48

4.15 Receive process ........ .............................. 49

4.16 Initiate-Departure process ....... ........................ 50

viii



4.17 Failure-Monitor ..................................... .32

4.18 Initiate-Agreement process ............................... 53

4.19 Timing process ........ .............................. 54

4.20 Initiate-Join process . .. ... ...... .. ...... ... .. .. 55

4.21 Agreement process .................................. 57

4.22 Commit process ......... .............................. 59

4.23 TokenPool-Manager process ....... ....................... 60

4.24 StatusTable-Manager process ....... ...................... 62

4.25 GroupView-Manager process ............................. 63

4.26 Message queue structure ................................ 67

ix



ACKNOWLEDGMENT

I would like to place on record my sincere thanks to my thesis advisor Prof.

Sridhar Shukla for all the help he has given me in the execution of my thesis research.

I would also like to thank Director (Training) Directorate of Training and Sponsored

Research for giving me an oppurtunity to take up this course. I am also deeply indebt-

ted to Director, Defense Electronics Research Laboratory for all the encouragement

he has given me throughout my career. I would like thank my wife Lalitha, for being

patient with me and helping me a great deal to complete this course successfully.

X



I. INTRODUCTION

A. BACKGROUND

Distr'ibuted computing systems are becoming increasingly popular to tackle

large computational problems associated with large defense systems. A distributed

system is a system with many processing elements and storage devices connected to-

gether by a network. Fault tolerance and parallelism are the two important properties

of distributed systems [Ref. DSS1]. The fault tolerance capability of a distributed

system is due to the replication of data and programs among several processing el-

ements. When one processor fails, another can take over the work and complete it.

The presence of several processing elements makes it possible to divide a program

into several segments to be executed in parallel, resulting in a speed-up.

Exploiting parallelism or achieving fault tolerance require communication among

processors. In fact, multiple processes in one processor have to communicate with

multiple processes in other processors. Conventional operating systems provide a net-

work level interface for this type of communication. In a distributed 3ystem, where

such communication is basic to programs, it becomes a very complex task to manage

communication between processes and write correct, efficient programs. Thus, there

is a need to provide higher level communication primitives to make writing distributed

programs less difficult. These primitives remove the burden of managing interprocess

communication from the application developer. The important features required of

these primitives are reliability and minimal communication delay.

Use of process groups is one of the approaches to write distributed applications

[Ref. B+90]. It is based on reliable communication and simplifies the writing of



applications. Process groups occur when groups of processes cooperate to perform a

task. share memory, subdivide computation, and so forth. For example. there could

be a process group where the leader performs the task of searching the database and.

in the event of its failure, some other member takes over and finishes the task. In

this example, process groups are used to provide a fault tolerant service.

The main features of the process group approach are, failure atomicity. for

multicasts, and ,membership atomicity, for failures as well as joins to a group. A

failure is atomic for a multicast if all members receive a multicast or none of them

receive it. Membership atomicity means that if a member joins or leaves the group,

every one agrees on it or no one agrees to it.

This sort of a guarantee provided by reliable primitives leads to the requirement

of all members in a group commiting to a failure or a joining of a member in the same

sequence such that there is a consistency in the membership changes to the group at

all member sites. The Group Membership Problem (GMP) is the problem of agreeing

on the membership of a group and disseminating that information consistently among

the members of the group.

B. OBJECTIVES OF THE STUDY

In this thesis, a decentralized mechanism for providing a consistent group view

at all member sites is presented. This approach assumes that the members are inter-

connected over a network of reliable FIFO channels. The GMP is solved by requiring

that each increment of the view number be assosiated with successive views that dif-

fer by only one member. This approach also assumes that the only failure mode is

fail-stop [Ref. Cri88] and the processors do not behave maliciously. This approach

uses tokens for achieving agreement and commit actions.

2



Unlike all the other approaches which are described in the next chapter. this

approach is a distributed approach and hence eliminates centralizing the responsibility

of ensuring consistency of view changes. This approach scales linearly with respect to

the number of messages as the number of members increases. It also guarantees that

the protocol is non-blocking and members can leave and join the group continuously.

C. THESIS ORGANIZATION

This thesis has six chapters. The second chapter deals with the earlier mem-

bership protocols, their merits, and problems.

In Chapter III, the decentralized membership protocol is discussed and formal

algorithms are given. The implementation details, details of the process specifica-

tions, and the data structures used are given in Chapter IV. Since the implementation

involves a lot of interaction among various processes. the system calls used in the

implementation are also discussed in this chapter. Chapter V gives an extended

example of the working of the protocol. Chapter V1 deals with the future work in

this area. Appendix A gives a listing of the programs developed.

3



II. EXISTING APPROACHES

This chapter deals with the existing approaches to the Group Membership Prob-

lem (GMP). It first describes GMP and how it is useful in Electronic walfare appli-

cations. It then describes, in detail, various approaches to GMP.

A. GROUP MEMBERSHIP PROBLEM

The task of managing a distributed computation containing replicated processes

is best formulated in terms of management of process groups, where each group

represents a fault-tolerant process. The process group's membership changes when its

processes fail (they are removed), when they recover (they are re-instated), when new

processes join, and when processes leave voluntarily. The process group's members

query the membership view and are able to take actions based on the membership

view. Agreement on the membership of a group of processes is a must to avoid

inconsistency problems. This problem of agreement on the membership of the group

is defined as the Group Membership Problem.

1. Importance

For example, let us consider an Electronic Warfare system that is required

to perform a complicated task of countermeasures initiation based on threat assess-

ment. Threat assessment is based on several parameters like the type of enemy

platform, threat priority, and the most effective countermeasures possible. These

parameters are evaluated by a group of processors which interact with one another

through messages. The messages could be broadcasts, i.e., the same message is sent

to different processors for a collective action. It is necessary that all operational

processors agree on the failures to take correct and consistent corrective action.

4



Let us consider that a processor A sends messages to two other processors.

B and C, for a particular sequence of actions to take place. If A fails after sending the

message to B, and before sending the message to C. it is possible that B does not know

of the failure of A. In this case, the action taken by B and C could be inconsistent

and erroneous. If both, B and C knew of the failure of A then they would be able

to recover from the failure based on consistent information. Similar examples can be

found in the database field and in real time applications. [Ref. CT90]

2. System Classification

Distributed systems can be classified into synchronous and asynchronous

systems. In synchronous systems, all events are deemed to happen one at a time.

In this type of system the groupview is frozen at the time of message sending. All

messages wait till the changes to group membership are complete and all membership

changes wait till all pending messages are sent. There is a close synchronization in the

clocks of the interacting processes and there is a known upperbound on the message

delivery time.

In an asynchronous system, there is no relationship between the clocks of

interacting processors. The time for message delivery is unknown. It is not possible

to be certain of the failure of any process, since there is no upper bound on the time

a message takes to be delivered. Therfore, processes are only perceived to have failed

and crashes are indistinguishable from communication delays. It is necessary that

processes perceived to have failed be removed from the group. If not, it is impossible

to reach a consensus on the failure of a processor [Ref. FLP85]. In the rest of the

chapter, several existing approaches to group membership problem are discussed.

.5



B. SYNCHRONOUS SYSTEMS

In a synchronous distributed system the processor clocks are synchronized. This

clock synchronization leads to availability of a global time at all processors. There

is a known upper bound on the message delivery time and this leads to detection

of a failure in a bounded time. Cristain has given one method for solving the G\IP

[Ref. ('ri88] in this setting. Another approach is given by Ezhilselvan and Lemos

[Ref. EzLe90]. These are discussed in greater detail in the subsequent paragraphs.

1. Periodic Broadcast Protocol

This protocol, developed by Cristain [Ref. Cri88], assumes a synchronous

communication network which provides a message diffusion service and a bounded

delay on the message delivery time. These assumptions lead to the premise that two

processors are unable to communicate only if one of them has failed. It also assumes an

atomic broadcast tolerant of performance failures, i.e., failure of the communication

link to deliver messages within a known bounded time.

In this protocol, all members periodically send messages to one another

about their presence. Since an atomic broadcast is assumed, all operational processors

receive this message. If a processor fails, then it is not able to send the periodic

message and all the other members know of its failure within a bounded delay and

remove the failed member from their view. Each of these periodic messages contains

the clock time associated with it and is used to synchronize the clocks. The renewal

time for the next broadcast is a constant time added to the synchronized time.

When a new processor wants to join, it sends a new-group message to all

the members with the group id. All the members of that group respond to the joining

processor by sending the present message to it. These messages are used by the joining

processor to create its view of the group at that point. The time of renewal is now

changed to take into account the member joining.

6



This protocol has the advantage that failures are detected in the quickest

possible time. If a processor failed immediately after signaling its presence. its failure

is noticed within time equal to the message renewal time added to the maximum

message delivery time. The drawback of this protocol is that it requires n atomic

broadcasts every group renewal time, where n is the number of members in the group.

2. Attendance List Protocol

This protocol was also developed by Cristain [Ref. Cri88] and assumes the

same type of broadcast facility and communication network as the previous one. The

joining of the new members is a!so handled in the same way. In this protocol, the

membership is checked by sending a datagram to all the members some time after a

join is completed. This datagram reaches all members within a bounded time and all

members check to see if they received it within the right time. If there is a failure,

at least one of them does not receive the list and it issues a new join phase. In

this phase, the member which has failed does not participate and his membership

is removed from the group by other members. This protocol has a reduced message

overhead in the absence of changes and is more efficient than the periodic broadcast

protocol. This reduced overhead leads to an increase in the failure detection time.

3. Robust Group Membership Algorithm

This algorithm, proposed by Ezhilselvan and Lemos [Ref. EzLe90], is de-

veloped for real-time systems. It assumes a failure free broadcast network which

preserves the order of messages and has a bounded interval on message delivery time.

It also assumes that all processors access the medium in a known order and can detect

the absence of processors broadcast in a bounded time interval. This algorithm deals

with send-failure, receive-failure and crash-failure.

All processors maintain a vector, denoting the status of each member,

which is transmitted periodically to all members, in a particular time slot known to

7



all members. During each cycle, all processors exchange this information with one

another. In this way, all processors have the same information and each of them.

by executing the same algorithm, arrives at the same results. The member status

is continually updated depending on the message received. If no message is received

then its status is denoted as message absent, and if it is different, it is designated

as failed. This is because the processor might have a receive-failure and might not

have received the messages. Based on these updates, the new group membership is

determined. All processors need to check for a majority of operational poucessors in

a cycle. If more than the majority fail, then the status of the processor is set to failed

and it stops execution.

This algorithm takes action in a distributed manner. Its drawback is that

it requires all processors to have a priori knowledge of the sequence of medium access

for all processors.

C. ASYNCHRONOUS SYSTEMS

In an asynchronous distributed system, there is no upper bound on the mes-

sage delivery time. There is no synchronization of clocks, and hence, the concept of

global time is not there. Since the delivery delay is unbounded, it is impossible to

distinguish between failures and communication delays. Therfore, in an asynchronous

system, processors are only perceived to have failed. Because of these constraints, the

algorithms require multiple message rounds for committing a change. The following

paragraphs deal with approaches by Chang, Birman. Bruso, and Smith.

1. Failure Detection and Notification Protocol

This protocol, developed by Bruso [Ref. Bru85], is aimed at distributed

database systems with a token ring network. It detects the failure of nodes and notifies

all nodes when a recovery is complete. It is designed for crash failures and commu-

8



nication isolation. In this protocol, an acknowledgement is required for all messages.

The protocol is divided into failure detection and recovery reporting segments

The failure detection is decentralized and is achieved in the following way.

If a processor does not receive an acknowledgement for a message after many re-

transmissions, it initiates the failure detection by sending node down messages to

all other processors. All processors receiving this message retransmit it to all other

processors. The approach is robust with respect to multiple failures. This leads to a

flood of messages where each processor sends to every other processor. Each of these

messages sent is acknowledged and the replies are used for determining which nodes

are reachable. If an acknowledgement is not received, then the failure detection is

started for the node for which acknowledgement was not received. All processors, on

receiving a node down message, do not attempt to verify it and change the status to

down. In this way, tile integrity of the member status at all nodes is preserved.

The recovery reporting is a centralized function. When a processor recov-

ers, it sends a node up message to all processors. Processors, on receiving the message,

will note the status as up and acknowledge to the recovered process. The recovered

process updates its local status based on the acknowledgement. It also verifies that

all processors that it can reach also agree about the status of all down nodes. This

protocol uses a version number for reaching agreement. A version number denotes

the number of times a node has failed. This is done by initiating failure detection

protocol for the members from which acknowledgement was not received. This causes

all other processors to follow suit. The greatest merit of this system is that it is simple

and robust for multiple failures. Its problem is that the number of messages does not

scale linearly as the number of members increases.

9



2. Protocol Based on Total Message Ordering

This protocol by Moser, et.al.. is built on top of protocols guaranteeing

reliable and totally ordered message broadcasts[Ref. LSA91]. This protocol is non-

blocking and tolerates partitions. It assumes an underlying fault tolerant ordering

protocol and no broadcasts are delayed when there is a membership change.

In this protocol, all messages are associated with ordinal numbers denoting

their position, since total order common to all processors is assumed. There is an

agreement process running on the ordering of messages. If a processor does not order a

message for a long time it is deemed to have failed and a failure notification message is

sent by the processor identifying failure. Since all messages are ordered, this message

is sent in the same relative order to all other members and the processor is removed

from the group.

When a processor wants to join the group, it sends a special message called

a request message. This message. when received by another processor, is ordered with

an ordinal number. It sends an acknowledgement message to the requesting processor

with the ordinal number of the most recent message it has ordered. The processor

now orders all the messages it receives and, when it receives the ordered message,

determines that it has been admitted to the group and starts sending messages.

These protocols only give incremental changes to the configuration. For getting the

complete view, it is possible to have initialization algorithms which initialize the view

each time a processor joins the configuration.

This protocol has a low communication overhead for membership changes.

However, it assumes a total order on messages which involves multiple message rounds

for agreement.

10



3. Protocol Based on Rotating Token List

This protocol by Maxemchuk and Chang is developed as a result of devel-

oping reliable broadcast protocols using a rotating token site [Ref. CMS4]. In this

protocol, a reformation of the token list occurs whenever there is a failure or recovery.

This is a three phase protocol. The protocol assumes a datagram service and assumes

fail-stop behavior. There is a token list of all members in the group. A site which

detects a failure or recovery is the originator of the protocol. It invites other sites in

the group to form a new list. To prevent multiple lists being generated a site can join

only one list, and the list containing the majority is taken to be the valid list.

All lists have a version number attached to them. A site can join only lists

with a higher version number. These two rules are used to generate only one valid list.

The originator receives responses from the other members with the timestamp of the

next message they are expecting and the version number of the list. If the response

is from a majority of the members in the old list. it creates a new list consiFting of

members who have responded and passes it to all the members in the new list. If

it does not have a majority, it aborts the reformation phase. In phase 3, if all the

members in the token list agree, the new token list is committed and the token is

passed to the new token site. The token site is selected based on the timestamp of

the message and the member with the largest time stamp is elected to be the token

site because it has received the most number of messages. Timeouts are incorparated

in the protocol such that there is no eternal wait for responses.

This protocol is a blocking protocol and is likely to be unmanagable if there

are frequent changes to the group. When the token site fails, the reformation protocol

is more complicated and requires another round of communication to recover any lost

mesages.

11



4. ISIS Approach

This approach is a nonblocking approach developed by Birman, et.al., [Ref.

RB91I. It assumes that processes communicate through a completely connected net-

work of reliable FIFO channels. There is no bound on message delivery times and

there is no global clock. It does not assume any underlying fault tolerant communi-

cation. The processes only fail by crashing and all recovering processes are joined as

new processes.

This protocol is a centralized approach. There is a process designated as

Mgr (for manager) which is responsible for coordinating updates to the local views

of other processes. When a process finds another process faulty, it informs the Mgr.

Mgr then initiates a two phase protocol to commit the failure. It sends a message

informing the failure of a member to all the other members of the group and awaits

their response. At the end of this phase, all operational members agree on the failure

of the member. In phase 2, Mgr broadcasts a commit message that informs all

members to remove the member from their groupview.

If the Mgr fails in the middle of a commit phase, no system view will ex-

ist. To reestablish the view, the reconfiguration algorithm deals with progression

and succession problems. This is a three phase algorithm. The initiator broadcasts

the reconfiguration interrogation message to all the members in its local view. The

initiator is a member who has been the member of the group for the most number of

changes. The initiator broadcasts a reconfiguration interrogation message to all pro-

cessors in its local view and awaits its response. Based on the majority response, the

initiator determines an update event, based on the local states of the other processes.

The execution of this event restores the system view. The initiator broadcasts this as

the reconfiguration proposal message. It then sends the commit message after receiv-

ing a majority response. Election of a new manager must avoid invisible commits.

12



The protocol tolerates only minority of failures in successive views and is one of its

problems.

13



III. GROUP MEMBERSHIP PROTOCOL

In the previous chapter, several approaches to GMP were discussed and their

merits and problems were highlighted. A decentralized Group Membership Protocol

has been proposed by Shukla and Devalla in [Ref. ShDr]. In this thesis we further

elaborate on the protocol and describe an implementation. This chapter describes

the basic functions and algorithm of the protocol. and therfore . contains material

that has been directly reproduced from [Ref. ShDr].

The basic functions required of group membership protocols are to detect changes

in the membership and ensure that all operational members commit these changes to

their local views consistently. The consistent commit requirement entails an agree-

ment about the change detected. Given such a protocol, higher level tools for con-

structing distributed applications, such as ISIS [Ref. BSS91J, can be constructed.

Solution of the GMP is complicated by the following two properties of asynchronous

distributed systems. Firstly, since it is impossible to distinguish a failed process from

a slow process, failure detection is not possible. Any failure is only a perceived failure

that everyone must commit to eventually. Secondly, unless the underlying network

communication is embellished in some manner, such as total ordering of messages

[Ref. LSA91] or total ordering of access to the communication medium [Ref. EzLe90],

the consistency must be achieved using only a network of reliable, first-in-first-out

(FIFO) communication channels, the delay over which is unbounded. This implies

that agreement and consistent commits can only be achieved by multiple message

rounds.

In this approach, as in [Ref. BSS91], it is assumed that all communication be-

tween members of a group carries a view number. The GMP is solved by requiring

14



that each increment of the view number be associated with successive views that differ

in only one member and guaranteeing that a given view number, at any operational

member, has the same membership. The protocol proposed herein uses a completely

connected network of reliable FIFO channels and incorporates continuous changes to

the group membership without the need for a priori knowledge of potential members.

This approach eliminates the need for centralizing the responsibility of ensuring con-

sistency of view changes as in [Ref. RB91] by maintaining the group view ordered as

a logical ring at each member. Each member perceives the departure of a neighboring

member and joining members enter on one side of a virtual marker whose position is

maintained by all the members. Agreement and commit actions are achieved using

tokens circulated along the logical ring. The protocol is able to regenerate lost tokens

and ignore duplicate tokens generated during its operation.

A. ASSUMPTIONS, OVERVIEW, AND DEFINITIONS

Our objective is to develop a group membership algorithm that can be used

as the basis of fault-tolerant process group-based communication primitives such as

those described in [Ref. B+90, BJ87. BSS9 ]. As mentioned previously, it is assumed

that every membership view at a member is assigned a view number and views cor-

responding to successive numbers differ by exactly one change (either deletion or

addition of a member). Reliable FIFO communication channels between any two

processors that are operational is assumed. All failures are assumed to be crash or

fail-stop [Ref. Cri88]. This implies that a message sent will not be delivered only

because of the receiver's failure. However, it may be arbitrarily delayed. Continuous

changes to the membership are allowed; however, the changes are committed one at

a time. A member gets added to the group when a join request is processed and gets

deleted from the group when a departure is perceived. It is assumed that the group

15



name is public to those processes that may wish to join the group. Some mechanism is

assumed to exist whereby the process wishing to join can query the operating system

at a site if it is running a member process of the known group name.

1. Overview

Group Membership Protocol (MP) guarantees that the changes to the

group view and their sequence at each operational member are identical. Using a

view number in all group-related communication guarantees that fault-tolerant group

communication can be achieved. The principle feature of the Mli' is that there is no

central element either to detect a member's change in membership status or to guar-

antee consistency of a commit action on the group ri. :.,rsh;p. Both are achieved

in a distributed manner using a logical _in:g which is simply a conceptual circular

ordering of the members. It has n, relation with the physical locations of the mem-

bers. Given such a ring and a direction of traversing it ( clockwise is selected for no

particular reason), each member periodically queries its counter-clockwise neighbor

for its status. The neighbor then responds with a status message when it receives this

query. It, in its turn, sends a status query to its counter-clockwise neighbor. Thus,

every member monitors one other member and is itself monitored by a third member.

For example, if there are 6 members p0 to ps, a logical ring can be configured in

which P0 is an counter-clockwise neighbor of 1) and clockwise neighbor of pr, Pi is an

counter-clockwise neighbor of P2 and clockwise neighbor of P0, and so on. Pi sends a

status query to po and po responds with a status message to pl. The status message

from pa is monitored by pl. This is illustrated in Fig. 3.1. Every member periodi-

cally sends a status query and receives a message that indicates that the monitored

membei continues to be a group member. Initially, the ring configuration is known

to all the members. As members change status, either voluntarily or involuntarily,

the ring configuration changes. The protocol maintains sufficient information at each

16



status queryPhot X

lenter ttatus
markiere 5 resp

direction

of token S~circulation

ae joininu W member da vu r,3ism
enters the logical

ring here

p I monitor. Pn but p2 monitor r p d e and r e on. Asm, the

pwrition where a new member enter m i n ihown for the example
°'PhMt = P5"

Figure 3.1: A Logical ring

operational member to enable it to determin e thprocessor it must monitor.

The MP treats the cases of a ineber leaving the group in the same manner

as a member joining the group. 1 When a member departs voluntarily, it simply

stops responding to the status query from its monitor. Upon failure, it is unable to

respond to its monitor. In either case, if a monitor does not receive a status message

within a certain time interval after its query, the monitored member is perceived to

have left the group and the algorithms to ensure that all the operational members

consistently commit to this change are invoked. When a member recovers or wishes

to join anew, it sends a join request to the first group member it can locate. The

member wishing to join interrogates all the member sites which could have the group

running at its site. It is assumed that the operating system at each member site has

a knowledge of all the groups that the processes executing in it are members of. The

'Failures amount to a member leaving involuntarily and recoveries amount to a member joining

as a new one.

17



MP guarantees that only one of the operational members of the group processes the

join request. There are two phases in the protocol to process a join or a departure,

viz., the agreement phase and the commit phase. These phases are token-based and

guarantee that no tokens are lost due to departures. They also guarantee that the

protocols are robust with respect to generation and processing of duplicate tokens.

a. Processing of Individual Changes

Simple cases of individual changes are first illustrated to orient the

reader and a more detailed description is given in the next section.

A single departure is processed as follows. Once a member perceives

the departure of its monitored member because it does not receive a status message

in response to its query for a predetermined time interval, it initiates the agreement

phase by sending an agreement token to its clockwise neighbor. It also starts moni-

toring the counter-clockwise neighbor of the member perceived to have departed. The

agreement token is passed around the ring in the clockwise direction by each member

passing it on to its clockwise neighbor. When this token circulates back to the agree-

ment initiator, it has gone completely around the ring once and all the operational

members have information indicating that the group has reached an agreement on

the failure perceived. The agreement initiator then starts the commit phase by gen-

erating a commit token which is circulated around the ring in the same manner as

in the agreement phase. All the members receiving this token commit the change by

removing the departed member from their group view and updating the view number.

A join is processed as follows. The protocol maintains a logical marker

in the ring as the position between some pair of adjacent operational members at

initialization. The clockwise member of this pair is designated as the host of the

logical ring and is known to all members initially. As shown in Fig. 3.1, a new member

always enters as the counter-clockwise neighbor of the host who has the responsibility

18



of carrying out the agreement and commit phases for the new member. It should be

noted that identifying a member as failed merely determines who will initiate the

agreement phase for a join request and does not represent the centralization of any

function. Although the designation as a host may move from one member to another

in the clockwise direction due the departure of the host member itself, the protocol

enables all the operational members to maintain knowledge of the current host of

the ring. It makes the incoming member its monitored neighbor and delivers local

membership view, view number, and other related information to it.

2. Definitions

Certain items of information are maintained locally at each member to

ensure the correctness of the protocol. All members maintain a set corresponding

to the current group view containing all the operational members. In addition, they

maintain a status table locally which stores the perceived state of all the members that

are in the process of departing or joining. This table is used by a member to reject

any duplicate tokens generated due to the departure of a member in the ring in the

middle of any pha--. There is a pool of all the tokens received by a member wherein

all the tokens transferred to the neighbor are stored until removed by the update

policy described later. This pool is maintained in the order of receipt and is managed

so that no token is lost upon the failure of a member. Using the current group view

and the status table, each member determines the member it must monitor.

a. Group Membership Problem Definition

Every member, pi, associates an integer, vn, with its current group

view, denoted by the set GV,,1 1(pi), and increments it by one for every view change

committed. Solution of the group membership problem requires that

V pi G GV,,n(pi) andV n < vn, GVn(pj) = GVý(pi)

19



Therefore, a group membership protocol is correct if it guarantees the above. In the

following, unless necessitated by the context, the view number will be dropped as a

subscript.

b. Logical Ring

Assume a set of members. GV = {P0, P1. P2 . Pn-1 }, forming a log-

ical ring. A logical ring is simply a circular sequence of these members regardless of

their physical interconnection. Members along the ring can be visited by traversing

it either clockwise or counter-clockwise. Given such a ring,a direction of traversing

it, and a member, say pi, we define the following relation by visiting each remain-

ing member once along the ring, in order, and returning to pi from the last member

visited. Using this ordering of members. the following relation can be defined.

Ring Relation (RR): Given two members, P.4,p E GV. pi -+ pk (read

as pj is followed by pA, with respect to pi) if ph is visited after pi when starting from

Pi.

Clearly, given a ring and a direction of traversal, such a relation can

be defined with respect to every member in GV. On the other hand, given the above

ring relation for any pi, the logical ring has the following ring property.

Pi ph

V pi, ppk E GV if pi P-+ p4 ,, then Phk +Pi and pi

Every member orders its own group view as a logical ring with the above property. For

a logical ring, we define a logical marker along the ring that does not move. However,

its adjacent members may change due to departures and joins. Every member pi

keeps track o' the position of the logical marker by ordering GV(pi) as a logical ring

with respect to phat where ph,,ot is the first operational member clockwise from the

logical marker. Every pi E GV(pi) has a rank, rankp,(pi), defined as the number of

members between Phoit and itself with rankp.(ph,,t) = 0. Every p1 maintains p,,o as

20



the last member to query it for its health.

c. Tokens

The proposed protocol is based on token circulation to achieve agree-

ment and consistent commit actions among members. The agreement token initiated

at pi for pi perceived to have departed or joined is denoted as agreep,(pi). Similarly,

the commit token initiated at pi for pj perceived to have departed or joined is denoted

as commit ,(p(). When there is a potential member wishing to join the group and

the request is received by a member of group other than the host, the member who

receives it sends a join request token denoted by joinreqp,(pj). It should be noted

that the initiators of the agreement and commit tokens for a given change need not be

identical and also need not be the same as the members that perceived the changes in

the first place. It is possible that P2 might perceive the failure of its neighbor Pi and

before initiating the agreement phase might itself fail. Then its neighbor p3 would

first initiate agreement processing for the P2 and then initiate agreement for pi. If p3

fails before the agreement phase is complete then its neighbor p4 would commit the

failure of pl, P2 and p3 .

Every token carries information about whether it is for a departure

or join. Every member pi maintains a local status table, denoted as STp,. A member

has an entry in this table at pi only if it has been perceived to have departed but

not yet committed out of GV(pi) or if it is perceived to have joined but is not yet

committed into GV(pi). This is an important property, since the correctness of the

protocol depends upon it. The five possible entries of STp (pj) are: DepartureAgreed,

JoinAgreed, DeparturePending, JoinRequest, and JoinPending.

DepartureAgreed entry signifies that the agreement token for the mem-

ber to leave has been initiated and it is yet to be committed and removed from

groupview. JoinAgreed entry is same as DepartureAgreed except that it is for join-

21



ing a group instead of leaving the group. DeparturePending and JoinPending entries

signify that agreement phase is completed but there are other changes to be com-

mitted before committing this change to maintain consistency at all member sites of

the order of committing the member. JoinRequested entry signifies that a potential

member has sent a request for joining the group and that this member has passed

on the information to its neighbor on the way to the host. Every member pi main-

tains a pool of all the tokens it receives, denoted as TknPool(pi), in the order they

are received. Tokens from this pool are deleted carefully because the receiver of a

token may depart before receiving it or immediately after receiving it and the token

is likely to get lost. The principle followed in token deletion is to retain a token at a

member until it is guaranteed that its use is complete. The TknPool update policy is

as described in the next section.

d. Neighbor and Host Computation

The following rules determine ph,,t(p1 ), the clockwise neighbor cwnbr(p ),

and the counter-clockwise neighbor acwnbr(pi) using the ring relation on GV(p1 ) and

the status ta[,!e STpE.

* Rule to determine a new ph,,t: At pi, ph'ot = Pi E GV(pi) such that V pk(4

pj) E GV(pi),

pi + p, where Pad is the old host. This rule assigns the operational clockwise

neighbor of p.ad as the new Ph,,t and is invoked to compute the new host every

time a member commits the departure of its phot. It should be noted that

selection of the new host is determined only by the current GV(pi) and not

along with ST,,,. Since all the group views are consistent, this ensures that all

the members arrive at the same phOt.

Time of application: This rule is applied whenever there is a removal of a mem-

"9.)



ber committed.

e Rule to determine cwnbr(pi): The clockwise neighbor is always the member

from whom the status query is received. cwnbr~pi) = p,,,,.

Time of application: This rule is is applied whenever status query comes from

a member other than the current cwnbr.

e Rule to determine acwnbr(pi): acunbr(pi) = pj E GV(pi) such that V pk(-$

pi) E GV(pi)

pk P pj and pi V

Exception: If pi = ph,.tand3 a pi such that STpi(pj) changes from JoinAgreed

to JoinPending or gets committed, acwnbr(pi) = pi. Upon a join, this ensures

that Ph'.st determines the correct member to monitor.

Time of application: This rule is applied whenever a timeout on the arrival of

status report from the current acwnbr and when there is a removal or join being

committed.

B. THE MEMBERSHIP PROTOCOL

For a departure, the NIP at a member is activated either by non-receipt of

the status response from its cwnbr, the monitored member, or by the receipt of a

departure agreement token from its acwnbr. In case of a join, it is activated if it

is the ph,,,t and receives a JoinReceived token from its acwnbr. JoinReceived token

processing is described in a greater detail in chapter IV.

We shall first describe the change detection instruments of this protocol. We

follow this with description of the agreement and commit algorithms executed at any

member. It should be remembered that the membership view at pi is arranged as

a logical ring, and therefore, the ring relation is defined on it. Also, every member

2:3



places a logical marker on its own logical ring.

1. Status Change Detection and Agreement Initiation

Figure 3.2 shows the protocol each member executes to monitor its counter-

clockwise neighbor and initiate an agreement token if a departure is detected. The

Monitor process is triggered by the local clock. The clockwise and counter-clockwise

neighbors are computed according to the rules given earlier in every iteration of the

while loop. If a status message is not received, it shuts off communication with

the member perceived to have departed (to prevent receipt of an excessively delayed

response), updates the local status table, generates and adds it to the local pool of

tokens, and sends the agreement token to its clockwise neighbor.

Note that only an operational member that does not have an entry in the

status table is determined to be the cwnbr by the rules.

If this member turns out to have already departed, the status reporting

instrument shown in Fig. 3.3 ensures that the token will get sent to the next clockwise

operational member. When a change in the querying member is detected, the TknPool

gets sent to the new querying member in addition to the status response. It recognizes

a change in the querying member by inspecting p,,,,,, to send its TknPool. It should

be noted that ReportStatus does not compute the clockwise neighbor, but simply

responds to the sender of the query.

Similarly, when a member receives a JoinRequest, it executes a protocol

as specified in Fig. 3.4. A non-member wishing to join a group finds the nearest

site running a process that is a member of the group it wants to join. It sends a

join request to this member and waits for an intimation of the request approval for

a preset interval before resending the request. Duplicate requests are handled as

described below. The member receiving the request does the following:

24



Monitor process at pi
1 while (true)
2 send status query to acwnbr(pj);
3 wait for Tpd; /local timeout interval"/

4 if (status message not received)
5 shut off communication with acwnbr~pi);

6 STp,(acwnbrdpi)) +- DepartureAgrccd:
7 generate agreep•(acwnbr(pi));
8 add agreep*(pi) to TknPool;
9 send agreep(acwnbr(pi)) to cwnbrpi);
10 else
11 wait for Tquery period;

12 end if;
13 end while;
end Monitor.

Figure 3.2: Algorithm for monitoring and agreement initiation

"* If the request is not a duplicate, it generates JoinReceived token with the

requester's address in it. If the request is a duplicate, the member ignores it.

"* Enters this token in its TknPool, makes an entry in ST and sends it to its cwnbr.

2. The Agreement Phase

The algorithm used to process an agreement token is shown in Fig. 3.5.

If the member that receives an agreement token for the first time is not its initiator

ReportStatus process at pi
1 if (querying member 4 p....)
2 send TknPool to the querying member;
3 p,,, = querying member;
4 end if;

5 send status to p,,,,m;
end ReportStatus.

Figure 3.3: Algorithm for reporting the status

25



InitiateJoin for a request from p,, at pi
1 while (true)
2 read Tknpool forJoinRequests;
3 if (ph,.. = pi)
4 generate agreep1 (pnw);
5 STpi(pnw) +- JoinAgreed;
6 add agreepi(pn,) to TknPool;
7 send agreep,(p,,) to cwnbr(pi);
8 else send joinreqp, (pn•.i,) to cwnbr;
9 end if:
10 end while;
end InitiateJoin.

Figure 3 4: Algorithm to initiate a join

then it must simply p-6 it on to its clockwise neighbor after adding it to its token

pool and updating the local status table (lines 15-19 of Fig. 3.5). However, if it is

the initiator of the token, it must generate a commit token. It must also generate

a commit token, if a member receives a duplicate agreement token with an initiator

that has an entry in its status table denoting the failure of the initiator.(Iine 1, Fig.

3.5).

The member commits a change to its view when it sees a commit token

for it. Therefore, the initiator of a commit token must commit the change locally in

addition to generating and sending it. There are two aspects to committing a change

in the group view in this protocol. Firstly, since the ring configuration may lead

to two commit tokens arriving at two different members in the opposite order, t1

changes must be committed in a consistent order at all the members. Secondly, when

a change is committed, it must be ensured that all the protocol-related entities are

correctly updated. All the effects of committing a change as CommitChange whose

steps are shown in Fig. 3.6.

26



3. The Commit Phase

The processing of a commit token as it circulates around the ring is shown

in Fig. 3.7. If the receiver is the commit initiator (token circulates back to its initiator)

or if the commit token is received again, it simply exits. This indicates completion

of the protocol for that particular change. If it is received for the first time at a

member, appropriate commit action must take place (line 4). After committing the

change specified in this token, it is likely that a change for which a commit token

generation was kept pending locally, can now be committed and propagated because

it now has the lowest rank. All such peliding changes can now be processed (lines 5

- 7). We now discuss the actions required for committing a change (CommitChange).

a. Effects of a Commit Action

All the effects of a commit action are shown in Fig. 3.6 as CommitChange

for commitP,(pk) received at pi. The straightforward effects are deletion of pl. from

the group view at pi, update of pi's local status table, its view number increment,

and passing the token on to pi's clockwise neighbor. There are three other important

effects that must take place when a commit token is generated. First, it must deter-

mine a new host (line 8), phot for the ring according to the rule given at the end of

section 2. Second, it must take appropriate action if the change committed is a join

(lines 9 - 11). The additional function to be performed when committing a join is to

send the current group view, view number, local status table, and the token pool to

the joining member. This is essential to ensure that the new member has up-to-date,

consistent information about the group at the time of joining. Receiving it from phot,

which is clockwise from itself, guarantees that the new member behaves consistently

with the host. Finally, committing a change locally presents an opportunity to cor-

rectly update the local TknPool (lines 5 - 7). The principle followed in this update

is that a token should be deleted from the TknPool only when the member is certain

27



that its use is over. It allows inspection of all the tokens in it and keeps them ordered

according to their arrival. As specified by the ReportStatus process of Fig. 3.3, the

entire TknPool at a member is sent whenever the cwnbr changes. This happens when

a member that perceives the departure of its counter-clockwise neighbor establishes a

new counter-clockwise neighbor by querying it for status. The new counter-clockwise

neighbor sees a change in the member querying it, and therefore, sends its TknPool

to the new monitor.

b. Ensuring an Identical Sequence of Commits

As members perceive departures/joins around the ring, they initiate

agreement phases independently. Therefore, in this protocol, it is possible for multiple

agreement phases to proceed simultaneously around the ring resulting in two commit

tokens that circulate around the ring at the same time. The two changes divide the

ring in two pieces. Clearly, the order in which these commits reach the members in

these two pieces will be opposite. An identical order is maintained in this situation,

as specified by lines (2 - 12) of Fig. 3.5. When a commit token is to be generated,

it is first checked to see if there are any unprocessed agreement tokens in the token

pool. If there are, commits resulting from these are ordered identically around the

ring; otherwise, a commit token is generated and change committed (lines 3 - 4).

If there are unprocessed agreement tokens in the token pool, the commit initiator

determines if the member for which a commit is to be initiated has the smallest rank

among all the members for which there are unprocessed agreement tokens (lines 6 -

9). 2 It should be remembered that the rank of a member is its distance from ph,,t

in the clockwise direction. If the rank is not the smallest, the local status is marked

as pending (line 11) and the change is committed and propagated at a later time.

2Agreement tokens for joins in the pool do not matter because members always join with the
highest rank.

28



Thus, use of the rank ensures that all the members commit in the same order around

the ring. It should be noted that the pending status for a change gets marked only

in the commit initiator.

C. CORRECTNESS OF THE PROTOCOL

We prove several propositions relating to the correctness of the protocol pro-

posed.

Proposition 1: No tokens are lost if a member updates its TknPool using

CommitChange.

Proof: If pi receives commitP,(pk), it is guaranteed to have received agrecp,(pk)

some time previously because the agreement phase is followed by the commit phase.

Obviously, agreep,(ph) has circulated completely around the ring. Suppose 3 a

commitpl(pm) received at pi before agreep,(pk). Thus, in between the arrivals of

commnitp(pm) and commitp,(pk) at pi, 3 a token, viz., agreep,(pk) has circulated

around the ring completely. This implies that commitpg(p,.) has circulated around

the ring completely also, regardless of the locations of pi, pj, and pi around the ring due

to the FIFO property of channels. Thus. cornmitp5 (p,) has served its purpose and can

be deleted from the TknPool at pA. Therefore, both, agreep,(pk) and commitp,(p,,,)

have completed their use and can be deleted. By adding commnitp(pk) to the TknPool

at pi, its update is complete. If this token pool is sent to the cwnbr(pi) according to

ReportStatus, no tokens will be lost.

Proposition 2. Exactly one pi determines itself to be PoMt.

Proof. CommtChange determines a host only when it commits a departure for the

current ph,,t. According to the rule for determining the new host, only the local group

view is inspected and the clockwise neighbor of the departed host is determined to

be new ph,,t. According to Proposition 1, no tokens are lost. Therefore, the commit

29



ProcessAgreementTkn for agreepj(pk) at pi

/*A commit must be generated either when I am the

agreement initiator or when a duplicate token is received
due to departure of the agreement initiator p7-/

1 if ((pi = pi) 1I ((ps $ pi) && (duplicate token) && (pi C STpj)
1.1 && (pt E STp, VpI s.t. pi -j• pi)))

2 if (no unprocessed agreement token in TknPoo1)
3 generate commitp,(pk);
4 CommitChange;

5 else
6 compute rank Vpt E STpj with Agreed status:
7 if (rank(pk) is smallest)
8 generate commitp,(pO);
9 CommitChange:
10 else

/*depending upon whether for join or departure of pA,*/
11 STp,(pk) +- DeparturePending or JoinPending;
12 end if;
13 end if,
14 else
15 if (((pi $ pi) && (not a duplicate agreep,(pk)
16 add agreep,(pA) to TknPool;
17 STpi(pk) +- DepartureAgreed or JoinAgreed;
18 send agreep,(pk) to cwnbr(pi);
19 end if;
20 end if;
end ProcessAgreementTkn.

Figure 3.5: Protocol for agreement tokens

30



CommitChange for commitp,(pk) at Pi
/*Depending on whether a join or departure-/

I add or delete p, from GV(pi);
2 delete ph entry from STpi;
3 vn(pi) <- vn(pi) + 1;
4 send commitp,(pk) to cwnbr(pi);
5 delete all commit tokens received before

agreep,(pk) from TknPool;
6 delete joinreqp,(pk);
7 delete agreep,(pk);
8 add comrnitp,(ph) to TknPool;
9 determine new phot;
10 if ((join committed) && (pi = phM.t))
11 update acwnbr(pi);
12 send ST(pi), Tknpool(pi) and GV(pi) to the acwnbr(pi);
13 end if;
end CommitChange.

Figure 3.6: Protocol for committing a change

ProcessCommitTkn for cornmitp,(pk) at p1

I if ((pi = pi) (duplicate))
2 exit;
3 else
4 CommitChange;
5 while (3 p, c Si,, with a higher rank & pending status

received before agreep3 (pO))

6 CommitChange;
7 end while;
8 end if;
end ProcessCommitTkn.

Figure 3.7: Protocol to process a commit token

31



token for the departure of the old host is processed by every member. Since the host

had rank 0, which is always the lowest, every member determines the same member

as the new phot.

Proposition 3: An agreement phase is always started.

Proof: In case of a departure perceived by a member, say pi, it may itself depart

before initiating the agreement token or after sending it. In the latter case, the

commit phase is carried out by cwnbr(pi). In the former case, cwnbr(pi) perceives the

departure of pi and initiates an agreement phase. It attempts to monitor acwnbr(pi)

whose agreement pi could not initiate. cwnbr(pi) perceives acwnbr(pi) as departed

also and initiates an agreement phase for it. This sequence of events is extended if

there is a string of departures.

If pi is the host and fails before initiating the agreement phase for a join,

cwnbr(pi) determines itself to be the new host and receives the JoinReceived as part

of the TknPool to initiate the agreement phase. Argue that no join requests are lost. w

Proposition 4: The joining member and phot behave consistently after the

agreement initiation.

Proof: Ph,,at sends its GV, ST, TknPool, andvn to the joining member pn,,. The

exceptions to the rules to compute cwnbr and acw-ibr ensure that the logical ring is

correctly configured with p,•,. as the highest rank member. When the acwnbr(ph.at)

before the join notices that the querying member is different from its p,,., it becomes

aware of the new member in the ring and sends it TknPool to it. Therefore, all tokens

that are passed to Phot while the state transfer to p, 1,, is taking place are sent to

Pnew. This ensures that pnw behaves consistently with ph,Pt.

32



Theorem 1: The proposed protocol correctly solves the GMP stated as

V Pi E GV,,(pj) and V n < vn, GV,,(pj) = GV,,(p1 )

given that all members start with the same initial group view (GV').

Proof: We provide a proof by induction.

Base Case: Vpi,pi E GVo(pk), GVo(pi) = GVo(pj) at system initialization.

Induction Hypothesis: Assume that 3k > 1 E N such that Vpi, pj E GVk(pi) GVk(pi) =

GVh (pi).

We now prove that the next change committed by any two members is identical.

Consider any pi,Pj E GVh+l(pj). Without loss of generality, let commitp.(pl) be the

next change to be committed by pi. There are two cases.

Case 1 - pi + pi: It is clear from the change detection instruments that pi - pi and

pi t pl. Therefore, if a change involving pi is view change (k + 1) committed at pi,

either the only agreement token ph has at the time of initiating commitp,(pg) is for p,

or p, has the smallest rank among all agreement tokens in the TknPool at pk. Now, a

commit token initiated for p,, such that p,1 -* pi cannot result in view change (k + 1)

at p1 because this implies that p,,, has a lower rank at pi than p, whose agreement

token will be part of the TknPool at pi. Therefore, agreement token for p,. would

also be part of the TknPool at pk and would have the smallest rank at the time of

initiation of commitPA(pl). This contradicts the fact that pi had the smallest rank at

ph or was the only agreement token at pj. Therefore, view change (k + 1) committed

at pi is due to commitpf(pi).

Case 2 - pi ? Pj: In this case, commitp,(pi) that results in view change (k + 1) at pi

must first pass through pi since pi + pi and tokens circulate in the clockwise direc-

tion. This implies that view change (k + 1) at pi is also due to commitft(pI).

33



Thus, given the induction hypothesis for view change k, we prove that

Vpi, pi E GVk+l(p1 ) GVk+I(pi) = GVk+1(p,)

This completes the proof by induction.

34



IV. IMPLEMENTATION OF THE PROTOCOL

In this chapter, the implementation aspects of our Group Membership Proto-

col(MP) are discussed. Major functionalities of the protocol are detection of failure,

agreement of failure, committing of failure, addition of members, and supplying the

current view to application processes. This requires the protocol to communicate with

application processes executing on the same member, MP at other members, and be

able to act on the information recieved from other processes. The action taken by the

MP depends on the data received. The data that it receives from and sends to the

external world is depicted in Fig. 4.1. Based on this data flow, the software design

for the protocol was developed as a set of interacting processes each performing a

unique function. The design used the utility Software Through Pictures [Ref. STP]

to visualise the interactions and to check for consistency in the data exchanged. The

following paragraphs give a more in-depth picture of the implementation details.

A. PROTOCOL SOFTWARE DESIGN

Fig. 4.1 gives the interaction of Group Membership Protocol with the external

world.

1. Functions in the Protocol

The Group Membership Protocol will be executed at all member sites of

a process group. This diagram gives the interaction of the MP with the application

program executing in the same member site and the MP executing at other member

sites. New Members and application requests for current group view are applica-

tions executing on the same host. Clockwise and anticlockwise neighbor represent

MP execution at other member sites. The protocol receives parameters (Token and

:35



Application

Neighbor Request for
Current Groupview

Status-Report-out Group Viw\\Token
I TokenPool

Status-Queryin\
Initial-Parameters
-Receive

0*
MP
at

P(i)

Status-Query-out
Inita-Parameter Jion-Requests

-send

Status-Report-in
Token

Counter-Clockwise New Members

Figure 4.1: Topmost view of MP interactions

36



TokenPool) from other member sites and updates its membership view accordingly.

It sends status query (Status-Query-out) to counter-clockwise neighbor and awaits

the reply from it (Status-Report-in). It receives status query (Status-Query-in) from

clockwise neighbor and sends reply (Status-Report-out) as a response. When it gets

a message requesting to join the group (Join-Requests) it acts on it in an appropriate

manner. Details are explained in the lower level descriptions. When this member site

joins a new group, it receives initial parameters (Initial-Parameters-Receive) and ini-

tializes its parameters( Group View, TokenPool. Status- Table). An application wanting

the current members of the group (Group View) queries the MIP to get the current

membership.

2. Subcomponents of MP

Fig. 4.2 gives the overall view of the various functions in the MP software

running at every member process. The functions are implemented by a number of

sub-processes. The name of the processes and their functions are given in Table 4.1.

A detailed process specification is given in the lower level diagram corresponding to

each process defined in this diagram.

B. DATA STRUCTURE DEFINITIONS

Different data structures used for implementation and in process specifications

are described below.

Address is a special data type defined as a long. It is generated by the Unix system

calls. It uses the conventional Internet address and the port address to generate

a unique address. It is used for communication with processes spread over

different hosts.

Action-message: This is defined to enunciate several action-oriented messages on

stored data. They include add, remove, and update of a linked list. The defi-

337



-~. Inidla-Paranseters-Receive

Join ~
Initia

*Initial-Gronp Vew Statu~ablk

(TokenPooloen , GroupView tt~~l
\\Manager \\ \ii Manager ' ~ Manager

bor 2

Token 7 ~ Niho- Member-

Current- / Sau

j /GroupView{

LEGED TkenInitiate 1
I ~ ~ ~ Ji Update.upiw Dprtr

Prcs 2ntae UpdteSttu Stte

Toe ToCottummius tau-Qeyi, Sn

S CurrentTokenooo

ToTkeeoo

Intil P ra etrsSe d Int iatenSau- ur n

Tokena-Sooh Inital- armetar-R cw

Fiue .: Pprcss inteprrations aane

38or-od



TABLE 4.1: PROCESSES AND THEIR FUNCTIONS

NAME FUNCTION

FIFO-Channel-Layer This process is responsible for all the communica-
tion that MP has with other processes external to
it.

Initiate-Departure This process is responsible for monitoring the
health of the neighbor and initiating agreement
phase if the neighbor fails.

Initiate-Join This process receives join requests from new mem-
bers and acts on them in an appropriate manner.

Agreement-Process This process receives and processes the agreement
token.

Commit-Process This process commits the removal or addition of
a member from the group view.

TokenPool-Manager This process manages the token pool. It sees to it
that no tokens are lost and there are no duplicate
tokens.

StatusTable-Manager This process manages the status table and keeps
track of the status of all members in the
groupview.

GroupView-Manager This process manages the group view and updates
it when members leave and join.

Join-Initial This process receives the initialization parameters
and initializes the Status table, TokenPool and
GroupView data structures in the new member.

39



Act ion-message
char[10] Action-type;
Address Member-Address;

Figure 4.3: Action-type message structure

TABLE 4.2: DIFFERENT ACTION ORIENTED DATA STRUCTURES.

Data Element Action-type

Initiate-Agreement initagree
Initiate-Commit initcomit
Neighbor-Status statmembr

Send-Init-Param sendinitp
Update-Group View updtgview
Update-Status- Table rmvemembr
Update- TokenPool uptknpool

nition is given in Fig. 4.3. The different instances of occurrances of this data

type with the action-type is given in Table 4.2.

Group View-struct: This is defined in Fig. 4.4. The structure consists of View-number,

Group-Size as strings and an array of Addresses. The size of this array is equal

to the value specified as string in Group-size. Initial-Group View and Current-

Group View are instances of this data type.

Neighbor: This data type is used to define various instances at which a neighbor

address is required. It has two data elements, Initiator-Address and Neighbor-

Address. The data is used to pass the address of the clockwise neighbor of

the initiating address. It is defined in Fig. 4.5. NeighborAddress, Current-

Neighbor, and Neighbor-Member are instances of this data type.

40



GroupView-struct
char[5] View-Number;
char[3] Group-Size;

{
Address Member-Address;
} [atoi(Group-Size)]

Figure 4.4: GroupView message structure

Neighbor
Address Initiator-address;
Address Neighbor-address;

Figure 4.5: Neighbor-Address structure

Status Table Structure: This is defined to specify the message structure for sending

Status Table contents. It consists of a string of characters denoting the Num-

berOfEntries and an array of another structure consisting of member address

and status as elements. The size of this array is given by the value specified in

number of entries. It is defined in Fig. 4.6. Initial-Status-Table and Current-

Status-Table are instances of this data type.

Token-data: This is defined to enunciate multiple instances of its occurrance. This

structure consists of the elements initiator-address, member-address, and token-

StatusTable-st ruct
char[3] NumberOfEntries;
{
Address Member-Address;
char[10] Status-of-member;
} [atoi(NumberOfEntries)]

Figure 4.6: StatusTable message structure

41



Token-struct
Address Ini1tiator- address;
Address Member- Address;
char[10] Token-type;

Figure 4.7: Token structure

TokenPool-struct
char[3] NumberOfTokens;

{
Token-struct Token-field;
} [atoi(NumberOfTokens)]

Figure 4.8: TokenPool message structure

type. The token-type is used to distinguish between various tokens. The defi-

nition is given in Fig. 4.7. The explanation of various instances is given in data

structure Token description.

TokenPool-struct: This data type consists of a character string denoting number

of tokens and an array of token-field of type token-struct. The array size is

given by the number of tokens field. The Fig. 4.8 gives the data definition.

Initial- TokenPool and Current- TokenPool are instances of this data type.

Group View: This is a linked list used for storing the group view at each process site.

The data structure consists of view number and group size as a character string

and a linked list of member address and next member pointer. The tail of list

is specified by null address in next-member field. The data structure is defined

in Fig. 4.9.

Initial-Parameters-Receive: This is a character string formed by concatenating Initial-

Group View, Initial-Status- Table and Initial-TokenPool into a single message.

42



GroupView
char[5] View-Number;
char[3] Group-size;
Member-pointer{
Address Member- Address;
Member- pointer 'Next-member;}

Figure 4.9: GroupView

Initial-Parameters-Send: This consists of the destination-address of the message and

a message formed by concatenating Current-Group View, Current- TokenPool

and Current-Status- Table.

Join-Requests: This has requesting member address and the name of the group to join

as components. The Request-member-address is of type address and Group-

name is a character string.

Member-Status: The components of this data structure are member-address and a

character string denoting the status of member as specified in status table.

Reset-timer: This is a message string "resetimer" to reset the watchdog timer used

for taking periodic actions.

Status-message: This data type is defined to specify the data structure for querying

and responding messages. The data definition is given in Fig. 4.10. Status-

Query-in and Status-Query-out have the action field as "statquery". Status-

Report-in and Status-Report-out have the action field as "statreprt".

Status- Table: This data is a linked list used for storing the status table at each process

site. The data structure consists of number-of-entries in the list, and a linked list

consisting of member address, member status and next member pointer. Null

43



Status-monitor message
char[10] action;
Address Init iator- Address;
Address Dest ination- Address:

Figure 4.10: Status-Monitoring message structure

Status-Table
char[31 NumberOfEntries:
Status-pointer{
Address Member- Address;
char[1O] Member-status;
status-pointer 'Next-entry;}

Figure 4.11: Status-Table

address in next-member field denotes the tail of the list. The data structure is

defined in Fig. 4.11. The different entries of member status are DepartureA-

greed, JoinAgreed, DeparturePending, DepartureAgreed and JoinPending.

Timeout-message: This is a message "timeoutms" to denote that a time out has

occurred.

Token: This is an instance of occurrance of Token-struct. Token-type is a string

denoting type of token. There are 5 types of tokens and Table 4.3 gives a list

of tokens and the Token-type corresponding to each of them.

TokenPool: This data is a linked list used for storing the tokenpool at each process

site. The data structure consists of number of tokens as a character string and

a linked list of member address, token-type and next member pointer. The tail

of the list is specified by a null address in the next-member field. The data

structure is defined in Fig. 4.12.

44



TABLE 4.3: DIFFERENT TOKENS WITH THEIR TOKEN-TYPES

Tokens TokenType

Join Agreement Token Joinagree

Failure Agreement Token Fai/agree
Join Commit Token Joincomit

Failure Commit Token Failcomit
Join Requested Token Joinreqst

TokenPool
char[3] NumberOfTokens;
Token-pointer{
Address Member-Address;
char[10] Token-type;
Token-pointer *Next-token;}

Figure 4.12: TokenPool

45



TokenStatus: This is a data structure consisting of token-struct element specifying

particular token and a character string giving the status of the token as old or

new.

Update-Status: This is a data structure consisting of the address of the member spec-

ifying the member-address and a character string giving the new status of the

member.

C. PROCESS SPECIFICATIONS

The individuai processes are described in great detail in the following para-

graphs. The function of each process, along with its inputs and outputs, is described.

The shared data managed, if any is also specified. The algorithm used for implement-

ing the function is also described.

1. FIFO-Channel-Layer

This process is responsible for all the communication with all the processes

external to the MP executing in the member site. It receives Status-query-out from

Initiate-Departure process and sends Status-Query-out to the counter-clockwise

neighbor. It receives Status-Report-in from counter-clockwise neighbor and sends

it to Initiate-departure process. On receiving a Status-Query-in from clockwise

neighbor it sends it to Initiate-Departure Process. It receives Status-report-out

from Initiate-Departure process and sends Status-Report-out to the site address

specified. If the member site is the host of the group, the Initialization-Parameters-

send is sent to the new member wanting to join the process group. If the member site

is the new member wishing to join the group, this process receives Initial-Parameters-

receive and initializes the storage elements in the MP protocol. Fig. 4.13 gives the

interaction of FIFO-Channel-Layer process with other processes.

46



Initiate- Agreement-Process Join-Initial
Join

49

3

InitiaL-Parameter,
InjfaI-Piara~et-Receive

send

Token, oken

TokenPoet;
Status-Report-in

7N~ Token

1.1 / 1.2

Send ,IStatus-Queq-ou4Re iv

Status-Report-out;
TokenPool

Status-Query-in,
In~i&-Parameter-

Toe , 4 Receive
Toýken cot;

shifus-Status-Qwey-IJV,

Reou t - Status-Report-out; Staus-Report-hi

Tokenoo 2 Token? ooL

Intate-Departure

Figure 4.13: FIFO channel process

47



Send process
1 while (true)
2 Receive message from message queue;
3 Extract the destination from the message;
4 Send the message to destination specified;
5 end while;
end Send.

Figure 4.14: Send process

This process is subdivided into Send and Receive process. Send process has

a message queue. All processes wishing to communicate with the processes external to

MP, but executing locally, send messages to the message queue. The destination part

of the message will specify the destination to be sent to. Receive process receives

message streams from other members. The type of message sent by each member is

embedded in the message. This process scans the type of message sent and sends the

message stream to the appropriate process. Send process has 12 data flows.

Input data flows are Status-Report-out, Token, TokenPool, Status-Query-out, To-

ken and TokenPool

Output data flows are Status-Report-out, Token, TokenPool, Status-Query-out, To-

ken and TokenPool

The algorithm used for implementing the process is given in Fig. 4.14. Receive

process has 9 data flows.

Input data flows are Status-Report-in. Token, TokenPool, Status-Query-in and

Initial-Parameters-receive

Output data flows are Status-Query-in, Status-Report-in, Token and Initial-Parameters-

receive

48



Receive process
1 while (true)
2 Receive message from other members;
3 Extract the type of message received;
4 Identify the destination process :
5 Pass the message to the destination process;
6 end while;
end Receive.

Figure 4.15: Receive process

The algorithm for implementing the Receive function is given in Fig. 4.15.

2. Initiate-Departure

This process checks for the health of its counter-clockwise neighbor by

processing the Status report received from it. It keeps track of the time elapsed from

the last query sent to the counter-clockwise neighbor. If the elapsed time is greater

than a threshold it takes the following actions.

1. It initiates the agreement token for the process perceived to have failed.

2. It updates the address of the process to which query is to be sent based on

Group View entries and Status- Table entries.

3. It updates the local Status-Tabt .. , lokenPool.

If it receives a query from a process other than its neighbor, it updates the status of

neighbor and does the following actions.

1. It sends status report to the new querying process.

2. It sends the Current-TokenPool to the new querying process.

Fig. 4.16 gives the interaction of Initiate-Departure process with other

processes. Initiate-Departure process is divided into 3 sub processes. They are

49



TokenPool
Manager

S-" Token

(6 2.2

Agreement
TokenPooI Initiator

StatusTable
Manager Tokenpool,

Token
7 Status-Query-in, ,I

Status-Report-in 1

"Update- . F
Status\ Channel

Layer

eset-timer

2.1 
2.3

Failu~re !Timing
Fanilure Timeout\ Process
Monitor

, message,,

"NeighborAddress

8

GroupView Manager __.

Figure 4.16: Initiate-Departure process

50



Failure-Monitor, Agreement-Initiator, and Timing-process. Failure-Monitor

does the processing for failure detection. It receives status query from FIFO-Channel-Layer

process and checks to see if the querying process address is the same as the previous

address. If it is the same, it sends status report t.o the address specified. If it is differ-

ent, it updates the new monitoring member as its clockwise neighbor. This process

periodically queries the counter-clockwise neighbor and waits for a status report. If

the status report is not received within a certain time, it shuts off communication

from that process . It sends an Initiate-Agreement signal to Agreement-Initiator

process. It then updates its neighbor from GroupView-Manager and sends query to

the new process.

Agreement-Initiator process initiates an agreement process when the

counter-clockwise neighbor is perceived to have failed. It receives a message from

Failure-Monitor process when a process has failed. It indicates the address of the

member perceived to have failed. It adds the agree token to the TokenPool and

sends the token to the new member. Timing-process process keeps track of time for

periodic actions. It signals if a timeout has occurred since the previous status report.

It resets the timer at the receipt of the reset timer signal. Failure-Monitor process

has 10 data flows.

Input data flows are Status-Query-in, Status-Report-in , Member-Status, Neighb-

orAddress, Timeout-message

Output data flows are Status- Que ry-out, Status-Report-out, Update-Status, Initiate-

Agreement, Reset-timer

The process specification is given in Fig. 4.17. Agreement-Initiator process has 6

data flows.

Input data flows are TokenPool, InitiateAgreement

51



Failure-Monitor process
1 while (true)
2 Read message from FIFO-Channel-Layer process;

/* Formal algorithm is given in Figs. 2 and 3 of [Ref. ShDr] */

3 if (message == Status-Report-in)
4 wait till Timeout-message is received: /r line 11 "/

5 reset timer
6 send Status-Query-out;
7 else if (message == Status-Query-in)
8 check Initiator-Address;
9 if (Initiator-Address == P,)
10 send Status-Report-out to Initiator-Address;
11 else
12 send Status-Report-out to Initiator-Address:
13 send TokenPool to Initiator-Address;
14 p,. = Initiator-Address;
15 end if
16 else if (message == Timeout-message)

17 Agreement-Init iate process gets Initiate-Agreement message;
18 get new neighbor address from GroupView-Manager;
19 send Status-Query-out to new counter-clockwise neighbor;
20 reset timer;
21 end if
22 end while;
end Failure-Monitor.

Figure 4.17: Failure-Monitor

52



Agreement-Initiator process
1 while (true)
2 wait for Initiate-Agreement message;
3 read address of failed member:
4 read address of new neighbor;

/* acwnbr(pi) is failed member. •/
/* cwnbr(pi) is new monitor. *'/

5 send agreep, (failed-member) to new neighbor:
6 send Token to TokenPool:
7 update status as DepartureAgreed:
8 end while;
end Agreement-Initiator.

Figure 4.18: Initiate-Agreement process

Output data flows are TokenPool, Token, Token, Update-Status

The process specification of this process is given in Fig. 4.18. The actions performed

are given in a Pseudo-code form in lines 6-10 of Fig. 2. in the [Ref. ShDr].

Timing-process process has 2 data flows. Input data flow is Reset-timer

and Output data flow is Timeout-message. The process specification is given in Fig.

4.19.

3. Initiate-Join

This process does all the steps involved in the process of adding a new

member. If this process receives a Join-Request and the process is in the host, or if

it receives Send-Init-Param message, then it perform - the following actions.

1. It receives the Current-Group View from the GroupView-Manager.

2. It receives the Current-StatusTable from StatusTable-Manager.

3. It receives the Current-TokenPool from the TokenPool-Manager.

53



Timing-process process
1 while (true)
2 wait for timer-overflow or reset-timer message:

3 if timer-overflow
4 send Timeout-message:
.5 disable timer;
6 else
7 wait for timer-overflow;

8 reset timer:
9 enable timer;
10 send timeout message:
11 end if;
12 end while:
end Timing-process.

Figure 4.19: Timing process

4. It sends all of the above information to the new member in a consolidated

message.

If a Join-Requests is received and it is not in host member it sends a Joinreqst token

to clockwise neighbor and adds the token to the TokenPool. This process has 8 data

flows.

Input data flows are Join-Requests, Current- TokenPool. Current-Status-Table, Group View.

Send-init-param

Output data flows are Initial-Parameters-Send, Token, Token

The process specification is given in Fig. 4.20.

4. Agreement Process

This process does the agreement token processing. Whenever it receives a

token it checks to see token type. If it is a commit token it sends a Commit-Initiate

message to the Commit-Process. If it is an agreement token it does the following

.54



Initiate-Join process
1 while (true)
2 wait for Join-Requests or Send-Init-Param:
3 if ((Join-Requests == true) and (host-process))
4 send Joinagree to clockwise neighbor;
.5 update Status-Table and add Token to TokenPool;

6 else
7 send Joinreqst to clockwise neighbor;

8 end if;
9 if ((Send-Init-Parm == true)
10 get Current- TokenPool from TokenPool-Manager,
11 get Current-Group View from Group View-Manager,
12 get Current-Status Table from Status Table-Manager;

13 convert all these messages to Initial-Parameters-Send message.
14 send the message to the new member.
15 end if;
16 end while;
end Initiate-Join.

Figure 4.20: Initiate-Join process

55



actions.

1. Checks if it is a duplicate token.

2. Update TokenPool if it is not a duplicate token.

3. If token is a duplicate, it checks to see if the current process has to initiate

commit, based on entries in the Group View and Status- Table.

If it is a join request token, it does the following actions.

1. Checks if it is the host process.

2. Sends the token to neighbor and add to TokenPool if it is not host process.

3. If it is the host, initialize the joining process by sending Joinagree token to the

clockwise neighbor. Update Status-Table and add Token to TokenPool.

This process has 9 data flows.

Input data flows are Token, Current-Neighbor, TokenStatus, Neighbor-Status

Output data flows are Token, Neighbor-member, Token, Initiate-Commit, Send-

init-param

The formal algorithm is given in Fig. 5 of [Ref. ShDr] . The process specification is

given in Fig. 4.21.

5. Commit Process

The commit process is responsible for committing the removal or the joining

of the member. This process waits for the initiate commit message specifying the

address and the action to be performed. The functions performed by this process are

1. Receive Initiate-Commit from Agreement -Process.

56



Agreement-Process at pi
1 while (true)
2 wait for Token;
3 if ( Token-type == (Joincomit or Failcornit))
4 send Initiate-Commit to Commit-Process;
5 else if ( Token-type == Joinreqst)
6 if (host-process)
7 send Joinagree to clockwise-neighbor;

8 update Status-Table and add Token to TokenPool;
9 else
10 send Joinreqst to clockwise-neighbor;
11 add Joinreqst to TokenPool;
12 endif;
13 else if (Token-type == Joinagree or Failagree)
14 if ((Token - type ==Joinagree) and (Member - address is in GroupView))
14.1 exit;
15 if (TokenStatus == old)
16 if ( Initiator-address self-address)
16.1 ((status of Initiator-address == not operational )
16.2 &W& (status of all members between initiator and self is non operational))
17 if more tokens present
18 compare rank of all agreement tokens;
19 if (rank of self is minimum) initiate commit;
20 else update status as JoinPending or DeparturePending
21 end if;
22 else initiate commit for agreement process
23 end if;
24 end if;
25 else
26 add Token to TokenPool and send Token to clockwise neighbor;
27 update status in Status- Table;
28 end if;
29 end if;
30 end while;
end Agreement-Process.

Figure 4.21: Agreement process

57



2. Check to see if it is a duplicate token.

3. If it is not a duplicate token then purge all commit tokens before the agreement

token of the member being committed.

4. Update the status table entry by deleting entry corresponding to the member

leaving.

5. Update Group View , and ViewNumber in the Groupview by deleting member if

Failcomit and by adding member if JoinComit.

This process has 4 data flows.

Input data flows are Initiate-Commit

Output data flows are Update-Group View, Update-Status- Table, Update- TokenPool

The formal algorithm is given in Fig. 6 of [Ref. ShDr] . The process specification is

given in Fig. 4.22.

6. TokenPool Manager

This Process manages the TokenPool which keeps a record of all tokens sent.

It maintains and manages a linked list of token entities in a client-server relationship. "

The service is requested by the client process by writing a message onto a message

queue. The service requested is embedded in the message. It does the following

functions, depending on the service required by the client process.

1. It adds a Token to the tail of the list.

2. Removes all commit tokens occurring before a. particular agreement token and

adds the commit token to the tail of the list.

.58



Commit-Process at p1

I while (true)
2 wait for Token;
3 if ( TokenStatus == New);
4 send Update-Group View message to GroupView-Manager;
5 send Update-Status- Table message to Status-Table-Manager;

6 send Update- TokenPool message to TokenPool-Manager;
7 send token to clockwise-neighbor process;

8 update host-process address and counter-clockwise neighbor address;
9 if ((host-process) and (Joincomit))
10 send Send-Init-Pararn message to Initiate-Join process;
11 endif;

12 if (DeparturePending or JoinPending)
13 if (rank of pending member is minimum)
14 initiate-commit;
15 end if;
16 end if;
17 end if;
18 end while;
end Commit-Process.

Figure 4.22: Commit process

59



TokenPool-Manager process
I while (true)
2 wait for message;

3 if (message-type == Tokenstat)

4 send status of token to client process;
5 else if (message-type == Tkpoolreq)
6 send contents of TokenPool to client process;
7 else if (message-type == Addtoken)
8 add token to the end of TokenPool;
9 else if (message-type == inittknpl)
10 extract tokens from message and create TokenPool;
11 else if (message-type == uptknpool)
12 remove all commit tokens before agreement token
13 remove Joinreqst token for member being committed
14 remove agreement token and add commit token in the TokenPool;

14 end if;
15 end while;
end TokenPool-Manager.

Figure 4.23: TokenPool-Manager process

3. Initialises the TokenPool list based on the information received from the mes-

sage.

4. Sends the content of the TokenPool to the requesting client.

5. Give the status of token as New or Old.

This process has 8 data flows.

Input data flows are Token, 'oken, Token, Initial-TokenPool, Update-TokenPool

Output data flows are Current- TokenPool, TokenStatus, TokenPool

The process specification is given in Fig. 4.23.

60



7. StatusTable Manager

StatusTable Manager keeps track of the status of the various members.

The process acts as a server providing service to various clients. Depending on a

client's request it does the following functions.

1. It sees if a member is listed in the Status-Table.

2. It gives the current status of the member in the Status-Table.

3. It updates the status of the member in the Status-Table.

4. It creates a message of all the members of he table with their current status

for new members.

5. It creates a new Status-Table from the message received from host.

This process has 5 data flows.

Input data flows are Update-Status-Table, Update-Status, Initial-Status-Table

Output data flows are Member-Status, Current-Status- Table

The process specification is given in Fig. 4.24

8. GroupView Manager

GroupView-Manager manages the membership list and the view number.

It interacts with other processes in a client server relationship and does the following

functions depending on client's request.

1. Check if a given member is in the Group View.

2. Add a new member to the end of the group.

3. Delete a given member from the group and maintain the logical ring.

61



StatusTable-Manager process
1 while (true)
2 wait for message;
3 if (message-type == Statmembr)
4 send status of member to client process;
5 else if (message-type == statblreq)
6 send contents of Status-Table to client process;

.7 else if (message-type == Updtstatus)
8 change status of member and add if not present already;
9 else if (message-type == inittable)
10 extract Status-Table from message and create Status-Table
11 else if (message-type ==Removmern)
12 remove status-table entry of member from Status-Table;
13 end if;
14 end while;
end StatusTable-Manager.

Figure 4.24: StatusTable-Manager process

4. Send all the members of the current view to the joining member if the process

is a host.

5. Create the Group View from the message received from the host.

This process has 7 data flows.

Input data flows are Neighbor-member, Initial-Group View, Update-Group View

Output data flows are Group View, Current-Neighbor, Current-Group View, Neighb-

orAddress

The process specification is given in Fig. 4.25.

9. Join Initial

This process does all the initialization when the process joins a new group.

It receives Initial-parameters-receive from FIFO-channel-Layer process and extracts

62



GroupView-Manager process
1 while (true)
2 wait for message;
3 if (message-type == Updtgriew)
4 add or remove member and increment Vieu.VNumber:

else if (message-type ==gpviewrtq)
6 send contents of group view to client process:
T else if (message-type ==neibraddr)
8 send the address of clockwise neighbor of member:
9 else if (message-type == inigview)
10 extract Group View from message and create Group V iew:
11 end if;
12 end while;
end GroupView-Manager.

Figure 4.25: GroupView-Manager process

Initial- TokenPool, Initial-Status- Table and Initial-Group View from the message. It

sends Initial- TokenPool as a message to TokenPool-Manager. It sends Initial-Group View

as a message to GroupView-Manager. It sends Initial-Status-Table to StatusTable-Manager.

D. IMPLEMENTATION ON UNIX MACHINES

In this section, some of the communication protocols that can be used for cre-

ating a ring of First-In-First-Out communication channels are discussed. A ring of

FIFO channels is created by logically ordering the group members in a ring and in-

terconnecting them through FIFO communication channels. The relative merits and

problems of various inter process communication (IPC) protocols available in UNIX

are studied . Since the implementation of a ring of FIFO communication channels

requires interaction of two or more processes, study of various methods for commu-

nicating between processes is necessary. In UNIX, there are different methods for

communication and we discuss each one of them and see how these protocols can be

used in implementing the algorithm, based on a logical ring of members in a group.

63



This sort of communication is not limited to only communication between two svs-

tems but also processes on a single system. We deal with the following types of IPC's

for intra-machine communication.

"* Pipes

"* FIFO's (named pipes)

"* Message Queues

We will be dealing with the following IPC's for inter-host communication

"* Sockets

"* Transport Layer Interfaces (TLI).

We deal with all IPC techniques for setting up a client-server relationship and deal

with all 'ypes of IPC's for the same host and discuss their relative merits and prob-

lems.

1. Pipes

Pipes [Ref. SR90] [Ref. Roch] [Ref. CM89] are provided by all flavors of

UNIX. ,• pipe provides a one-way flow of data. A pipe is created by the pipe system

call.

int pipe(int *filedes);

Two fil, descriptors are returned- filed 2s[O] which is open for reading and filedes[l]

which is open for writing. Pipes are of little use within a single process. Pipes are

typically used to communicate between two different process in the following way.

First, a process creates a pipe and then forks to create a copy of itself. Next the

parent process closes the read end of the pipe and the child closes the write end of

the pipe. This provides a one way flow of data between processes. For a two way flow

64



of data, two pipes are to be created and one is used for each direction. The actual

steps are given below.[Ref. SR90]

"* Create pipel, create pipe2,

"* fork,

"* parent closes read end of pipel,

"* parent closes write end of pipe2

"* child closes write end of pipel,

"* child closes read end of pipe2.

The biggest disadvantage with pipes is that they can only be used between processes

that have a parent process in common. This is because a pipe is passed from one

process to another through the Fork system call and the fact that all open files are

shared by the parent and the child after a Fork . There is no way for two totally

unrelated processes to create a pipe between them and use it for IPC.

2. FIFOs

FIFO [Ref. SR90, Roch, CM891 stands for First In, First Out . A Unix

FIFO is similar to a pipe. It is a one way flow of data with the first byte written to it

being the first byte read from it. Unlike the pipes FIFOs have a name attached to it,

allowing unrelated processes to access a single FIFO. FIFO is created by the mknod

system call.

int mknod(char *pathname, int mode, int dev);

The pathname is a normal Unix pathname and this is the name of FIFO. The mode

argument specifies the file mode access mode for the file (read, write permissions for

owner, group, world). The dev argument is ignored for a FIFO. Once the FIFO is

65



created it must be opened for reading and writing using the open system call. Three

system calls are required for creating and opening FIFOs for reading and writing

The sequence of actions involved are

"* Create FIFO

"* Open FIFO for reading and get file descriptor for reading

"* Open FIFO for writing and get file descriptor for writing

Only one command does the same thing for pipes. One of the rules followed by pipes

or FIFOs is that write is guaranteed to be atomic if the write is less than the capacity

of a pipe or FIFO. The capacity is greater than 4 kbytes. If it is greater then there is

a possibility of data and atomicity is not guaranteed. There is some care to be taken

in the order of open calls to avoid a deadlock condition. When the client opens FIFOI

for writing, it waits for the server program to open FIFOl for reading. If the first

call of server is for FIFO2 instead of FIFOL, each process would be waiting for the

other, and neither would proceed. This leads to a deadlock. One of the disadvantages

of pipes and FIFOs are that they are stream I/O models. The message boundaries

are delineated with the newline character and it is not possible to have structured

messages.

3. Message Queues

Message Queues [Ref. SR90, Roch] are used to pass messages between

processes in System V implementation. Processes read and write to arbitrary queues.

There is no requirement that any process be waiting to read before some other process

is allowed to write a message to that queue. This is unlike the case of pipes and FIFOs.

It is possible for a process to write a message in the queue and exit and have another

process read the messages at a later time. Each message on a queue has the following

attributes:

66



Message buffer structure
struct msgbuf {
long mtype; message type is greater than zero
char[] mtext; message data}

Figure 4.26: Message queue structure

e long integer type;

* length of the data portion of the message.

* data(if the length is greater than zero).

The message queue can be thought of as a linked list of messages. A new message

queue is created or the old one accessed using the msgget system call. The value

returned by msgget is the queue identifier msqid. Once a message queue is opened,

we put the message in the queue using the rnsgsnd system call.

int msgsnd(int msqid, struct msgbuf *ptr, int length, int flags);

The ptr argument points to a structure with the following template. Fig. 4.26 specifies

the structure of a message in a message queue. Message type must be greater than

zero since it is used by msgrcv as a special indicator to get messages of that particular

type only. This is very useful in multiplexing messages. One way of multiplexing a

single server with multiple clients, is to have one message type for communication

from clients to server and to embedd in the message, the type of message the client

will respond to. For example, the message type for client to server could be 1 and the

client will include their process id in the message. The server will use this process id

and use it as the type when sending messages to that client. The client will receive

only messages specified by its process id by specifying its process id as the type of

message it wants to receive. We now analyze a program where a server gets messages

67



from 4 clients on a message queue and processes their requests and replies to them

over the queue.

In this program the server maintains a linked list of the members of a

Groupview. There are four clients who can do the following functions.

"* Initialise the Membership list.

"* Add a member to the list.

"* Remove a member from the list.

"* Request the list of members in the current list.

The server gets this information from these clients and uses their process-ids to send

the message back to them. The server waits for messages from clients and acts on

them as they arrive. When there is more than one message they are acted on the

order of arrival. The server will always be waiting in the msgrcv system call. All the

IPCs discussed till now deal with communication only within the same host. Now we

deal with the methods of communicating over different hosts.

4. Sockets

Sockets [Ref. SR90, CM89] are basically used for Network I/O as opposed

to file I/O in the same machine. This needs more details and options. For example

the details and options that would be necessary are given briefly in a few sentences.

Typical client-server relationship is not symetrical, i.e. the actions to be performed

by a client are different from the actions to be performed by servers. To initiate a

connection request, the program must know which role it is to play. The network

connection could be connection oriented or connectionless and each has a different

sequence of actions to perform. The names are important in networking because

68



verification of authority for requested services should be possible. For network proto-

cols, message boundaries have a lot of significance. We deal mainly with connection

oriented networks since we are interested in a FIFO channel which is not guaranteed

by connectionless protocols. The transport is based on TCP protocols.

To do Network I/O, the first thing a process should do is to call the socket

system call specifying the type of communication protocol required. The socket could

be

"* stream socket,(connection oriented protocol)

"* datagram socket, (connectionless service)

"* raw socket,

"• sequenced packet socket.( more than one message sent with sequence numbers)

This call returns an integer similar to a file descriptor called sockfd. The bind sys-

tem call binds the local address and local process for a connection oriented server.

listen() and accept( system calls are used for foreign address and foreign process in

a connection oriented server. connect() system call is used by connection oriented

clients. The client knows the socket address by binding of the address by the server.

The server address is known to the client and the client knows the port number that

the server uses for socket connection.

5. Transport Layer Interface

Transport Layer Interface(TLI) [Ref. SR90, SUN] provide an interface to

the transport layer of the OSI model. It is a set of library functions that hide the actual

streams interface to the networking system. Two processes that are communicating

are called transport endpoints in TLI. The transport provider is a set of routines in

69



the host computer that provide communication support to the user process. Some of

the elementary functions in TLI are

"* t-open which is used to establish a transport endpoint by specifying the partic-

ular transport provider.

"* t-bind assigns an address to the transport endpoint.

"* t-alloc allocates space for various data structures used in all the TLI functions.

"* t-connect is used for connecting a client to a server in a connection oriented

network.

"* t-listen is called by servers waiting for requests from clients.

"* t-accept is called to accept connection indicated by t-connect function.

"* t-snd and t-rcv functions are used to send and recieve data.

70



V. AN EXAMPLE

In this chapter, we give an example of the execution of this protocol. The

example starts with a fixed number of members and simulates a sequence of failures

and joins to the membership. We then analyze the group view at all membtr sites to

see if they are identical for all view numbers.

A. INITIAL CONDITIONS

Assume six members in a group P0, P1, P2, p3, p4, and p, who form a logical

ring Po -* pi -- P2 -* p3 -- p4 -- p5. All members have this structure in their

groupview. Assume a ViewNumber of 6 at all places. The StatusTable has no

entries in it corresponding to any member in the group. The TokenPool at all sites

has the commitM(ps) token in the list. All members recognize member po as the

host of tl'e group. In this example, p, is the clockwise neighbour of PO, P2 is the

clockwise neighbour of P, and so on. The monitoring action consists of the member

querying its counter-clockwise member and getting a status report from it. Thus p)

queries p5 and gets a status report from it. Likewise (pl, po), (P2, Pl), (p3,p2), (P4,P3),

(P5,P4) form querying and reporting pair. Fig.3.1 gives the members and other related

information. The sequence of joins and failures to be checked for are

1. Failure of member P2,

2. Join request of p6 arriving at p, after agreeement phase for P2 is over,

3. Failure of member pr,

4. Join request of member p7 almost immediately sent to member Po, and

71



5. Failure of member po.

The next section describes in detail tho sequence of actions taking place at all member

sites for this sequence of events and gives a snapshot of Grouptiew . StatusTable

and TokenPool at different points of time.

B. EXPLANATION OF THE EXAMPLE

The example used here consists of three parts. The first part deals with a single

failure while the second part deals with a single join. The third part deals with

multiple failures and joins.

1. Failure of a Single Member

The snapshot of parameters at all members is given in Table 5.1. The failure

of P2 is detected by p3 when the timer in P3 timeouts before it can receive a stati"

report from p2- When this happens P3 shuts off communication from P2 and starts

the agreement phase of the %IP to agree on the failure of P2- The Failure-Monitor

process at p3 queries its local groupview manager and finds that the new member

that it has to monitor is pi. It then sends a status query to pl. It also sends an

agreement token agreep,(p 2 )for the failure of P2 to p4. It updates the TokenPool

with this agreement token and a status table entry for P2 is created with entry as

Failagrce.

When Pi receives the status query from P3 it compares the sender address

with its previous monitor address and finds it to be different. It shuts off communi-

cation to p2 and makes p3 its clockwise neighbor. pi also sends its Tokenpool and

status report to P3. The TokenPool consisits of only the commit token for join of ps.

This is because we have assumed that the last change to membership view was the

join of ps. The commit tokens are garbage collected when another commit token is

received and the commit tokens ,occiiring before the agreement token for the same

72



TABLE 5.1: SNAPSHOT OF INITIAL CONDITION

Event: This is the snap shot of the member parameters initially
Member(s) GroupView, TokenPool StatusTable Action

_ ViewNumber
P0, P1, P2, P3, {P0- Pl, P2, cornrnitpo(ps) Nil
P4, Ps P3, P4 , P5}, 6

member, are removed. Since join of ps was the last change, connitp,(ps) is in the

TokenPool till there is a new change. The status of the token is checked from the

Tokenpool. This token is seen to be a duplicate by P3 and it takes no action on it.

The Agreement token agrecp3 (p2) goes from P3 to P4 to P5 to Pi to P3.

The snapshot of parameters at all members is given in Table 5.2. The TokenPool

at all these member sites have the agreement token as the last token and the status

table entry at all sites at this point have the entry corresponding to P2 as Failagree.

When the token reaches p3 it is seen as a duplicate token. p3 then sees that it is the

initiator and initiates the Commit phase. P3 sends commit token to its TokenPool

and removes the entry corresponding to P2 in Status Table. It also removes the

token cornrnitpo(ps) which occurs before agreep,(p 2 ), as per the garbage collection

protocol. It also removes agreep,(p 2) from TokenPool and comrnitp3 (p2 ) is the onily

token in the TokenPool. The View number is incremented to 7 and P2 is -0moved

from groupview. The snapshot of parameters at all members is given in Table 5.3. It

sends the commit token to P4. These events happen at all the member sites and they

update their GroupView and StatusTable accordingly. When P3 gets the commit

token back from pi, it sees it to be a duplicate token and hence does not take any

action, thus completing the commit phase at all member sites. The snapshot at all

member sites is given in Table 5.4.

73



TABLE 5.2: SNAPSHOT AT THE END OF AGREEMENT PHASE

Event: The snapshot at the end of agreement phase

Member(s) GroupView, TokenPool StatusTable Action
SViewNumberj

PO, P1i P4, {Po, Pi! P2, comrnitP,(ps) P2 Failagrce
P5 P3, P4, PSI, 6

agreeP3(p2)

Initiates the
P3 same as above same as above same as above Commit phase of

P2

TABLE 5.3: SNAPSHOT WHEN ONLY P3 HAS COMMITTED

Event: The snapshot when only p3 only has committed
Member(s) GroupView, TokenPool StatusTable Action

ViewNumber T
PP0. P1, P3, P3 commits to
P4, Pd, 7 Commpits Nil departure

Po, P1, P4, {Po, P1, P2, commitp(P) P2 Faiagree
Ps P3, P4, P5 }, 6

agreep, (P2)

TABLE 5.4: SNAPSHOT WHEN ALL MEMBERS HAVE COMMITTED

P2

Event: This is the snapshot when all members commit P2
Member(s) GroupView, TokenPool StatusTable Action

IViewNumber

PO, P1, P3, p4, Po, P1, P3, t -N

P5 P4, P5}, 7 commitp(p2) Nil

74



2. Join of a Single Member

When t.e JoinRequest of a potential member p6 arrives at pi. the member

sees that it is not the host and creates a StatusTable entry for P6 as .Ioinreqst and

also updates its Tokenpool with joinreqp,(p 6 ). It sends this token to its clockwise

neighbor p3. This token goes to p4 and p, before it reaches the host Po0 The snapshot

at this point is given in Table 5.5. When the host gets this token it initiates the join

agreement phase by circulating the agreement token agretp(p 6 ). This token, as it

traverses round the ring, is added to the TokenPool of all the members.

When the host receives the agreement token again it initiates the commit

phase. It updates its GroupView, Tokenpool and StatusTable and sends commritp(p 6 ).

It then sends to P6 the current contents of its GroupView, StatusTable and TokenPool

and makes P6 its counter-clockwise neighbor. P6, on receiving the initialisation pa-

rameters, commits itself to the group view . The snapshot at this point of time is

gien in Table 5.6. p6 computes p5 as its counter-clockwise neighbor and sends a

status query to it. p5, on receiving the status query from P6, makes it the clockwise

neighbor and sends the TokenPool to it. The TokenPool contains agree,(p6) which

is not a duplicate token in p6. This token is ignored by p6 because it sees that it is the

agreement token for join of a member already in the groupview. The commit token

goes to all the members and when it receives a commit token, the Joinreqp,(p6 ) is

removed from the TokenPool. The snapshot at the end of the commit phase is given

in Table 5.7.

3. Multiple Failures and Joins

In this subsection, an example where a member joins the group and the

initiator of the agreement phase fails after passing the token is given. Another member

fails at the same time. The join request of potential member p7 is received t)y the host

p0 and it initiates the agreement phase. It sends the agreement token agreep(p 7 ) to

T5



TABLE 5.5: SNAPSHOT BEFORE INITIATING AGREEMENT FOR A
JOIN

Event: This is the snapshot before agreement phase for p6
lMember(s) GroupView, TokenPool StatusTable Action

'__ _jViewNumber

When Po receives
Joinreqv1 (p,), it

PPoP, Ps1, 7 commi1t 3 (p2 ) Nil initiates the
PP4, PS}, 7 agreement phase

for join

P1, P3, P4- P5 {P0, Pl , ConmitP3(P2 ) P6 Joinreq-3t
P4, P5}, 7

join rcqp, (P6)

Pi and fails. P, perceives the failure of the host and initiates the agreement phase

for its failure. It updates its counter-clockwise neighbor and sends a query to P6. P6

updates Pi as its clockwise neighbor and sends its report and TokenPool to pl. P,

sends agree,(p 7 ) followed by agrecp,(po) to P2.

If Po had failed without initiating the agreement phase. p7 would have

waited for a time period and would have sent the join request again. By that time

the failure of po would be committed, p1 would be the host, and would initiate the

agreement phase for the joining of p7.

At this point, P5 is perceived to have failed by p6 and P6 initiates the

agreement phase. The token is passed around the ring and it reaches P, before

agreement tukens aqreep(p 7 ) and agreep (po) circulate back to pi. When agreep(p 7 )

reaches pl it finds that it is a duplicate Loken. It also finds that other agreement

tokens are also present and that the initiator of agreement phase has failed and.

75



TABLE 5.6: SNAPSHOT WHEN p6 IS COMMITTED AT THE HOST
PO

Event: This is the snapshot when P6 is committed by p0
Member(s) GroupView, TokenPool StatusTable Action

ViewNumber

Po {P0, P,, P commitpo(p6) Nil
P4, P5, P6}, 8

P6 commits it-
self and begins
monitoring p5 al-

p6 same as above same as above same as above though it is not
yet committed by

P5.

P1, P3, P4, PS {Po, P P3, comrnt,14 3(P2 ) Pe Joinagree
P4, P5}, 7

Joinreqp, (P6)
agreep (P6 )

TABLE 5.7: SNAPSHOT WHEN ALL MEMBERS HAVE COMMITTED
P6

Event: This is the snapshot when all members commit Pe

IfMember(s) GroupView, T TokenPool StatusTable Action
ViewNumber

PO, P1, P, P4, fPO, P1, P3, comriit (p6 ) Nil
Ps, Pe P4, PS, P6}, 8

77



therfore, it must initiate the commit phase. It then computes the rank of all the

members whose agreement token is pending and it finds that there are agreement

tokens with smaller ranks. For example the rank of Po is 0, p5 has a rank of 4, and p7

has a rank of 6. So, it updates the status of p7 as *Ioinpending. It is assumed that

agreepe(p 5 ) is at p4 and has not reached p6. Table 5.8 gives the snapshot at this time.

The snapshot gives only the parameters of the operational members in the current

GroupView.

P, then receives the fail agreement token for P0, finds its rank as minimum,

and initiates the commit for p0. P6, on receiving agreep6(pO), finds that the rank of

p5 is not minimum and updates the status table entry for p5 as Failpending. When

commitpi(po) is processed at p6, it inspects other agreement tokens and finds that p5

has the minimal rank. It initiates the commit phase for p5. When the commit for ps is

processed at pl, it initiates the commit for join of p7. The snapshot is given in Table

5.9. It should be noted that, in this snapshot, p3 has not yet received the commit

tokens for both p5 and pr. At the end of these commit actions all the members will

have identical groupviews. However, the views committed at different members may

be different at a particular instant. From this example, it is seen that the MP is

robust for multiple failures and joins occuring at almost the same time.

7S



TABLE 5.8: SNAPSHOT SHOWING MULTIPLE AGREE TOKENS

Event: Snap shot to show pending state at the time of commit
Member(s) GroupView, TokenPool StatusTable Action

ViewNumber [_
PPo, P1, P3, commitm(pS) p7 JoinPending Initiates commit
P4, PS, P6}, 8

agreepo(P 7 ) po Failagree for failure of po
agreep1 (po) p5 Failagree and suspends
agreep6 (p5 ) commitpl(P7).

{ P0, P1, P3, commit(pe) pO P Joinagree
P4, P5, P6}, 8

agreep,(P7 ) Po Failagree
agreep1 (po) ps Failagree
agreep, (Ps)

P6 PO, P1, P3, commitp(p 6 ) p5 Failagree sets status of p5 as
P4, P5, P61, 8

agreep,(ps) p7 Joinagree failpending and takes
agreep(P 7 ) Po Failagree no further action on
agreep, (Po) receiving agreep.(ps)

79



TABLE 5.9: GROUPVIEW FOR SUCCESSIVE VIEW NUMBERS

Event: Snapshot at commit of p7 at p'
Member(s) GroupView, TokenPool StatusTable Action

ViewNumber J I

Pi {PI, P3, P4, commitp1 (po) Nil commitP1,(p 7)
P6, P7}, 11

commitNfi(pS) is sent
commitpl (P7 )

P7 same as above same as above same as above

p3 {Pl, p3, P4,
P3 P, P3, 9 agreeN,(pT) p7 Failagree

agreep(ps) P5 Failagree
commnI tP1 (Po)

P4 same as above same as above same as above

P6 ' P1, 1 0 agreem(p 7 ) p7 Fazlagree
P61, 10

cornmitpl (Po)
commit, 6(ps)

80



VI. CONCLUSIONS AND FUTURE
DIRECTIONS

A. CONCLUSIONS

In this thesis, a decentralized mechanism for providing a consistent group view

has been presented. This approach is different from other approaches, most of which

are centralized in nature for providing a consistent group view. The proposed ap-

proach is efficient in that it requires only 2n messages for committing a change to the

membership if the group contains n members. The number of messages is the same for

the failure of any member. The protocol is being implemented on a network of SUN

workstations. The different types of system calls for implementing the protocol have

been identified and tested. The programs for various client-server communication

patterns used for interfacing various functions have been developed and tested.

B. FUTURE WORK

There is a considerable amount of work that can be done as a continuation of

this thesis. The coding of the protocol needs to be completed and its functioning

observed. Various experiments should be run to characterize the latency of commit-

ting membership changes and compared with the centralized protocol implemented in

the same environment. Ideally, experiments should measure the performance seen for

reliable multicast primitives. Another extension to this thesis is to propose a formal

proof for the correctness of the protocol.

81



APPENDIX A
A. GROUPVIEW SERVER

#include <stdio.h>
#include "gvmesg.h"
#inclvde "msgq.h"

"* This is a server to maintain and update the group view. It receives
"* requests from other client processes and acts according to the
"* clients request.
*/

GVMesg group.view.mesg;

typedef struct list-node *MembPtr;

typedef struct listnode {
char membaddr[9];
MembPtr next;

} MembListNode;

struct view {/* the group view structure*/
int viewnumber;
int group-size;

} group-view;
MembPtr tempptr, headptr, tailptr,tempptrl;

main(){
int id, prid;
long key;

* create message queue if required.

key =1;
prid= getpido;

if ( ( id= msgget(GVSER,( PERMS I IPCCREAT))) < 0 ) {
err-sys("server: cant get message queue for GroupView server");
}

* do it eternally as an iterative server

while (key == 1) {

82



server(id);}

exit (0);}

server(id)
int id;{

int loop-index, loop-indexl, loopindex2, loopindex3, grpsize;
int grpview.num, num.bytes-read, ml, m2;
long proc-id-long;
char errmesg[256], *sys-err-strQ;

/*
* Read the message from the message queue

/* type for client to server messages */
group-view-mesg.mesg-type = iL;

if ( num.bytes.read= gview.mesg.recv(id,&group.view.mesg)) <= 0)
err.sys("server: message read error");

"* Convert the process id embedded as a long integer for sending
"* the reply back to the same client.

proc.id.long =atol(group-view.mesg.proc.id);

group-view-mesg.mesg-type = proc.id-long;

/*
"* check for the message header part. there are seven possibilites
"* if the header says "Uprmgview" then the member is removed
"* from group view. If the header says "Upadgview"then add the
"* member to the end of the group. If the header is "initgview"
"* the initial group view list is created from the contents of the
"* message. If the header is "neibraddr" the anti-clockwise
"* neighbor address is sent back to client. If header is "rankmembr"
"* the rank of the members specified is given. If the header is
"* "hostaddrs" the address of the host is given to the client.
"* If the header is "gpviewreq" the contents of the group view list
"* is sent as a message.

if (strcmp(group.view-mesg.msg.header, "Uprmgview") == 0) {

/*

83



* read in the members from the list and compare
* with the member to be removed, if a match
* is found then remove the member
* change the link address so that the link is not broken

tempptr = headptr;

/*
" extract the member address portion from the list and
" compare with the member to be removed. If there is no match
" go to the next member till the complete list is covered.

for ( loop-index = 0; loop-index < group.view.group.size;
loop.index++) {

if (strcmp( tempptr->membaddr,
group-view.mesg.mesg.data[O].member.address) != 0) {

tempptrl = tempptr;
tempptr = tempptrl->next;

* If the match is for the host( first member) remove host
* and update the pointer to the list

else if (loop-index == 0) {
tempptr = headptr;
headptr = tempptr->next;
free (tempptr);
break;}

else {

/* If a match is found in the middle of the list change
*the link to reform the list.

tempptrl->next = tempptr->next;
free(tempptr);
if (tempptrl->next == NULL)

tailptr = tempptrl;
break;

}}

84



* read in the current values of view number
* and number of members
* decrease the number of members and increase
* the view number.

group-view.view-number++;
group-view.group.size--;

else if (strcmp(group-view-mesg.msg.header, "Upadgview") 0) {

"* This segment of program creates storage for new member
"* it updates the view number and adds the address of
"* the new member to the list.
*
*/

tempptr = (MembPtr) malloc( sizeof( MembListNode));

* add the new member to the end of
* membership file. The first member is always
* the host and the succesive entries in the file
* denote the ring structure of group membership*/

strcpy(tempptr->membaddr,
group.view.mesg.mesg-data[0].memberaddress);
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;

/*
"* read in the current values of view number
"* and number of members
"* increment the view number and the number
"* of members

group.view.view-number++ ;
group-view.group.size++ ;

}
else if (strcmp(group.view-mesg.msg.header, "initgview") == 0) {

85



" this part of the program initialises the
" list structure and generates the initial group view.

group-view.view-number = atoi(group-view.mesg.view-num);
group.view.group-size = atoi(group.view.mesg.num.mem);

" create the list structure. make the
" pointer to the first element the header

for (loop.indexl = 0; loop-indexl < group.view.group-size;
loop.indexl++) {

tempptr = (MembPtr) malloc( sizeof( MembListNode));
if (loop.indexl ==0) {

headptr = tempptr; /* head of the list */
tailptr = headptr; /* initial tail */}

*copy the number of members iteratively.

strcpy(tempptr->memb-addr,
group.view-mesg.mesg-data[loop-indexl].member.address);
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;

}
}
else if (strcmp(group-view-mesg.msg-header ,"gpviewreq")== 0 ){

grpview.num = group.view.view-number;
grpsize = group.view.group.size;

" integer to ascii conversion routine for
" view number. the string is a null terminated

itoa(grpview.num, group.view.mesg.view.num, 5);

" integer to ascii conversion routine for number
" of members .the string is a null terminated

86



itoa(grpview-.num, group..view-mesg.num-mem, 3);
printf ("group size is %d\n", grpsize);
tempptr = headptr;

"* read the list completely and create the message to be
"* sent back. The process index is used for sending the
"* message back to the client.

for (loop..index2 = 0; loop-index2 < grpsize;
loop-index2++){

strcpy (
group..view..mesg .mesg-data[loop-.index2] .member-address
tempptr->memb-addr);
group..view..mesg .mesg-data[loop-.index2l.
member-address[8] = NULL;
tempptrl =tempptr;
tempptr =tempptrl->next;

group..view..mesg.mesg-.type = atol(group..yiew-mesg.proc-.id);
group-.view-.mesg.mesg-len = grpsize*12 + 22;
printf ("message length =/.d\n" ,group..view..mesg.mesg-len);
gview..mesg-send(id, &group-.view~mesg);

else if (strcmp(group..view-mesg.msg-.header, "hostaddrs") == 0){

"* send the address pointed by the headptr
"* as the host of the group.

tempptr = headptr;
strcpy (group..view..mesg .mesg..data [0].
member~address, headptr->memb-.addr);
group-.view-.mesg.mesg-.type =atol(group-.view..mesg.proc..id);
group-.view-.mesg.mesg-len 12 + 22;
gview..mesg..send(id, &group..view..mesg);

else if (st rcmp (group-vyi ew..me sg. msg-.header, "neibraddr") ==0){

* read in the members from the list and compare
* with the member address given, if a match
* is found then identify the member previous to
* the match as anticlockwise neighbor

87



tempptr = headptr;

"* extract the member address portion from the list and
"* compare with the member address given. If there is no
"* match continue till the complete list is covered.*/

for ( loopindex = 0; loopindex < group view.group-size;
loop-index++) {

if (strcmp( tempptr->memb.addr,
group-view-mesg.mesg-data[0].member-address) 0) {

tempptrl = tempptr;
tempptr = tempptrl->next;

"* If the match is for the host( first member)
"* tailptr( last member)is the anticlockwise neighbor*/

else if (loopindex == 0) {
strcpy(group.view-mesg.mesg.data[0].
memberaddress, tailptr-7Memb.addr);

break;
}

else {

/* If a match is found in the middle of the list
* anticlockwiise neighbor is the previous member.*/

strcpy(group.view.mesg.mesg.data[0].
memberaddress, tempptrl->memb.addr);

break;
}

}

" Send the message back to the client, fill the
" message structure with all relavant details.

group-view-mesg.mesg-type = atol(group.view.mesg.proc.id);
group-view-mesg.m'2sg-len = 12 + 22;
gview.mesg.send(id, &group.view.mesg);

88



}
else if (strcmp(group-.vview.mesg.msg.header, "rankmembr") == 0) {

/*
* read in the members from the list and compare
* with the member address given, if a match
* is found then identify the distance from
* head pointer as the rank.

for (ml = 0; ml < atoi(group-view-mesg.num-mem); ml++){
tempptr = headptr;

"* extract the member address portion from the list and
"* compare with the member address given. If there is
"* no match continue till the complete list is covered.

for ( loopindex = 0; loop.index<group.view.group.size;
loop.index++) {

m2 = loop_index;
if (strcmp( tempptr->membaddr,
group.view.mesg.mesg.data[ml].member.address)

0) {

tempptrl = tempptr;
tempptr = tempptrl->next;}

else {

/* If a match is found the loop index gives its rank.*/
group.view.mesg.mesg.data[ml].
member.rank[l] = ((m2%10) +48);
group-view-mesg.mesg.data[ml].
member-rank[O] = (((m2%100)- m2%10)/10 +48);

break;}
}

}

" Send the message back to the client, fill the
"* message structure with all relavant details.

group-view-mesg.mesg-type = atol(group-view.mesg.proc-id);
group.view.mesg.mesg-len =

12 * atoi(group.view.mesg.num.mem) + 22;

89



gview-.mesg..send(id, &group..view-.mesg);

*this segment checks for the list as it prints it out.

tempptr = headptr;

for (loop...index3 =0; loop..jndex3 < group-view.group..size;
loop-.index3++){

printf("check for string %s member rank is %s\n",
tempptr->memb-.addr,
group-.view-.mesg.mesg..data~loop...index3] .member..rank);

tempptrl =tempptr->next;
tempptr =tempptrl;

B. TOKENPOOL SERVER

#include <stdio .h>
#include "tkpmesg~h
#include "msgq.h"

/* This program maintains and manages the tokenpool.
*it receives messages from clients and acts on them accordingly.

TKPMesg token..pool..mesg,mesgl;

typedef struct list-.node *MembPtr;

typedef struct list-.node f /* Token pool structure *
char initiator..addr[9J;
char memb..addr[9];
char token-.type[lo]; /* token type of member *
MembPtr next;

}TokenPoolNode;

struct view {/* the Status table entries*/
int number-.of...entries;

}token-vyiew;
MembPtr tempptr, headptr, tailptr,tempptrl;

90



main(){
int id, prid;
long key;/*

* create message queue if required.
*/

key =1;
prid= getpid(;

if ( ( id= msgget(TKPSER,( PERMS I IPCCREAT))) < 0 ) {
err.sys("server: cant get message queue for tokenpool server");}

* do it eternally as an iterative server

while (key == 1) {
tokenpool.server(id);

}

exit(O);}

tokenpool-server(id)
int id;{

int loop-index, loop-indexl, loop-index2, loop.index3, grpsize;
int grpview.num, num-bytes.read , token-found, number-search;
long proc-id-long;
char errmesg[256], *sys-err-stro;

* Read the message from the message queue

*/

/* type for client to server messages */

token.pool-mesg.mesg.type = iL;

if ( ( num.bytes-read= tkp-mesg-recv(id,&token.pool-mesg)) <= 0)
err.sys("server: message read error");

proc-id-long =atol(token.pool.mesg.procid);

token.pool-mesg.mesg.type = proc-id-long;

"* check for the message header part. there are five possibilites
"* If the header says "Tokenstat" then status of token as old

91



"* or new is given, if it is "Add-token" the token is
" added in the end of group.
" if it is "uptknpool" then the list is traversed till agreement
" token for that particular member is found. If found all tokens
" before and inclusive of the agreement token are purged and
" the commit token is added at the end of token pool.
" If the header says "tkpoolreq" then the current token
" pool is sent as a message. If the header says "initkpool"
" then a list is created with the message supplied.

if (strcmp(token-pool-mesg.msg.header, "Tokenstat") == 0) {

" This segment checks the list to find out if the token
" is present or not.*/

tempptr = headptr;
for ( loop-index = 0; loop-index < tokenview.numberof-entries;
loop.index++) {

if ((strcmp( tempptr->memb-addr,
token-pool-mesg.mesg-data[O].member.address) == 0) &
(strcmp( tempptr->token.type,
token-pool-mesg.mesg-data[O].token-type) == 0) ) {

tokenfound = 1;
break;
}

else {
tempptr = tempptr->next;}

if (token-found == 0) {
strcpy(token-pool-mesg.msg-header, "notpresnt");

} else {
strcpy(token.pool.mesg.msg.header, "yespresnt");}

token-pool-mesg.mesg-len = 28 +17;
tkp.mesg.send(id, &token.pool.mesg);

}
else if (strcmp(token-pool-mesg.msg-header, "addtoken") == 0) {

/* this segment adds token to the end of the list after
*getting additional allocation.

92



tempptr = (MembPtr) malloc( sizeof( TokenPoolNode));
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;
strcpy (tempptr->token..type,
token...pool-.mesg .mesg-data [0] .token-.type);
strcpy (tempptr->memb..addr,
token-.pool-.mesg.mesg-.data[0] .member-.address);
strcpy(tempptr->initiator-.addr,
token-.pool-.mesg.mesg-.data[0 . initiator-.address);
token-.view .number..of..entries++;

else if (strcmp(token-pool-mesg.msg-header, "uptknpool") ==0){

* This segment updates the token pool with the commit token.
* the list is purged to remove tokens upto and inclusive
* of agree token of the member address

tempptr = headptr;
number..search = 0;

for (loop..jndex 0; loop~index < token-.view.number-.of-.entries;
loop..index++){

/* searh the list till agreement token for the commit action
*is found.

number..search++;

if ((strcmp( tempptr->memb..addr,
token-.pool-.mesg.mesg-.data[0] .member..address) == 0) &
(strcmp (token..pool..mesg .mesg-.data [0] .token..type,
"joincomit") == 0) &
(strcmp ( tempptr->token-.type,
"joinagree") == 0)){

break;
I

else if ((strcmp( tempptr->memb..addr,
token-.pool-.mesg.mesg-.data[0] .member-.address) == 0) &
(strcmp(token-.pool-.mesg.mesg-.data[0] .token..type,
"failcomit") == 0) &
(strcmp C tempptr->token..type,

9:3



break;

else{
tempptr = tempptr->next;

/* remove all commit tokens occuring before the commit token *

tempptr = headptr;
for (loop..indexl =0; loop..indexl < number-.search;
loop-.indexl++){

if (I ((strcmp( tempptr->token-type,
"joincomit") ==0) 1
(strcmp(tempptr->token-.type,
"failcomit") == 0) 1
((strcmp( tempptr->memb..addr,
token-.pool-.mesg.mesg-.data[01 .member..address) == 0) &
(((strcmp(token-.pool-.mesg .mesg...data [0] .token..type,
"failcomit") == 0) &
(strcmp( tempptr->token-.type,
"f ailagree") ==0) ) I
((strcmp(token-.pool-.mesg.mesg-.data[oJ .token-.type,
"joincomit") == 0) &
(strcmp( tempptr->token-.type,
"joinagree") == 0) ) ) ))) f

tempptrl =tempptr;
tempptr =tempptrl->next;

"* If the match is for the first member removal
"* update the pointer to the head of the list.

else if (loop-.indexl == 0){
tempptr = headptr;
headptr = temp~tr->next;
token-.view .number..of..entries--;
free (tempptr);

else{

/* If a match is found in the middle of the list change

*the link to reform the list.

94



tempptrl->next = tempptr->next;
token...view .number-.of-.entries--;
free(tempptr);
if (tempptrl->next == NULL)

tailptr = tempptrl;

*add commit token to the end of the list.

tempptr = (MembPtr) malloc( sizeof( TokenPoolNode));
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;
strcpy(tempptr->token-.type,
token-.pool-.mesg.mesg...data[O] .token-type);
strcpy (tempptr->memb..addr,
token-.pool-.mesg. mesg-data [0]. member-.address);
strcpy (tempptr->initiator-.addr,
token-.pool-.mesg.mesg...data[0 . initiator-.address);
token-.view number..of..entries++;

else if (strcmp(token-pool-mesg.msg-.header, £Iinitkpoolll) 0= ){

"* this part of the program initialises the
"* list structure and generates the initial token pool.

token-.view.nuinber-.of-.entries = atoi(token-.pool..mesg.num..mem);

"* create the list structure. make the
"* pointer to the first element the header

for (loop..indexl =0; loop..indexl < token-.view.number..of..entries;
loop-.indexl++){

tempptr = (MembPtr) malloc( sizeof( TokenPoolNode));
if (loop-.indexl ==0) f

headptr =tempptr; /* head of the list *
tailptr =headptr; /* initial tail *

95



*copy the number of members iteratively.

strcpy (tempptr->memb-addr,
token-.pool-.mesg.mesg-.data[loop-.indexll .member-.address);
strcpy(tempptr->initiator..addr,
token-.pool-.mesg.mesg-.data[loop-.indexl . initiator-.address);
strcpy (tempptr->token-.type,
token...pool-.mesg .mesg-.data[loop-indexl] .token-.type);
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;

else if (strcmp(token..pool-.mesg.msg..header ,"Tkpoolreq")== 0 )

grpsize = token..yiew.number-of-,entries;

"* integer to ascii conversion routine for number
"* of members .the string is a null terminated

itoa(token-.pool..mesg.num-.mem, grpsize, 3);
tempptr = headptr;
for (loop-.index2 = 0; loop-.index2 < grpsize; loop-.index2++){

strcpy(
token...pool-.mesg .mesg..data [loop..index2] .member..address
tempptr->memb-addr);
strcpy(
token-.pool-.mesg.mesg-.data[loop-.in-lex2] .initiator-.address,
tempptr->initiator..addr);
st rcpy (token-.pool-.mesg .mesg..data [loop...index2] .token-.type,
tempptr->token-.type);
token-.pool-.mesg .mesg-.data[loop-.index2] .member-.address [8]
NULL;
tempptrl =tempptr;

tempptr =tempptrl->next;

token-pool-.mesg.mesg-type = atol(token-.pool...mesg.proc-.id);
token-.pool-.mesg.mesg-.len = grpsize*28 + 17;
tkp..mesg..send(id, &token-.pool-mesg);

*This segment of program checks the list after each change

96



tempptr = headptr;

for (loopindex3 = O;loop-index3 <
token-view.number._ofentries;loop-index3++) {

printf("check for string /s\n", tempptr->memb-addr);
printf("check for string %s\n", tempptr->token-type);
tempptrl tempptr->next;
tempptr = tempptrl;

}

C. STATUS TABLE SERVER

#include <stdio.h>
#include "stmesg.h"
#include "msgq.h"

/* This prcgram maintains and manages the status table.
*it receives messages from clients and acts on them accordingly.

STMesg status-table-mesg,mesgl;

typedef struct list-node *MembPtr;

typedef struct list-node { /* Status table structure */
char memb-addr[9];
char member-status[101; /* status of member */
MembPtr next;

} StatusTableNode;

struct view {/* the Status table entries*/
int number-of.entries;

} status-view;
MembPtr tempptr, headptr, tailptr,tempptrl;

main ){
int id, prid;
long key;

*create message queue for status table server if required.

97



key =1;
prid= getpid();

if ( ( id= msgget(STSER,( PERMS I IPC-CREAT))) <0 ) {
err-sys("server: cant get message queue for status table server");

}

*do it eternally as an iterative server

while (key == 1)
status-table-server(id);

exit(O);
}

status-table-server(id)
int id;
{

int loop-index, loop.indexl, loop.index2, loop_index3, grpsize;
int grpview-num, numbytesread , address-found, ml;
long procidlond ;
char errmesg[2561, *sys-err-stro;

*Read the message from the message queue

/* type for client to server messages */
status-table.mesg.mesg-type = iL;

if ( ( num.bytes.read= st.mesg.recv(id,&status.table.mesg)) <= 0)
errsys("server: message read error");

proc.id-long =atol(status_table.mesg.proc.id);

status.table.mesg.mesg-type = proc-id-long;

" check for the message header part. there are seven possibilites
" if the header says "Statmembr" then the member's status
" is sent if available. If the header says "updtstats" then
" the member is added in the end of group with the updated status.
" If the header says "statblreq" then the current status
" table is sent as a message. If the header says "inittable"
" then a list is created with the message supplied.
" If the header says "removmemb" then the entry for the member
" is removed from status table. If the header is "checkpend"
" the status table sends the member address whose status is either
" failpending or joinpending. For header "getmemadr" the server
" returns all member address having the same status given in the

98



* message.

if (strcmp(status.table.mesg.msg.header, "checkpend") 0)
tempptr = headptr;
status-table-mesg.num-mem[O] = 48;
status.table.mesg.num-mem[l] = 48;

.for (loop-index = 0;
loop-index < status-view.number-of-entries; loopindex++) {

/*
"* check if any member in the status table has a pending
"* status. If present send the address. num-mem field specifies
"* the presence or absence of the member having pending status.

if ((strcmp( tempptr->member-status,"joinpendg") == 0)
(strcmp( tempptr->member.status,"failpendg") == 0)) {

strcpy(status-table.mesg.mesg-data[0].member-status,
tempptr->member-status);
strcpy(status-table-mesg.mesg-data[0].member-address,
tempptr->memb-addr);

status-table-mesg.num-mem[O] = 49; /* ascii I */
break;}

else {
tempptr = tempptr->next;

}
status.table-mesg.mesg-len = 19 + 17;
status-table.mesg.mesg.type = atol(status_table.mesg.proc.id);
st.mesg.send(id, &statustablemesg);}

if (strcmp(status-table-mesg.msg-header, "statmembr") == 0) {

/*
* This segment of program gets the current status of
* the member.If the member address is not present
* then it signals in the status field as not present.*/

/*
* read in the member address from message and compare
* with the member address in the list . If a match
* is found then send a message giving the current status.

99



tempptr = headptr;
address..found = 0;

"* search the table for the entry corresponding to the member
"* address given. If the address is f ound send the status
*as a message.

for ( loop..index = 0;
loop-index < status-.view.number-.of..entri.es; loop..index++){

if (strcmp( tempptr->memb..addr,
status..table-mesg.mesg-data[0] .member-.address) == 0){

strcpy(status-.table..mesg.mesg-.data[O] .member-.status,
tempptr->member..status);
address-.found = 1;
break;
I

else{
tempptr = tempptr->next;

*if address is not found send the message as "not Found".

if (address-.found == 0)
strcpy(status-.table-.mesg .mesg-.data[0] .member-.status,
"1notpresnt");

* send the message to the client, f ill the message structure
* with appropriate data.

status-table..mesg.mesg-.len = 19 + 17;
status..table-.mesg .mesg-.type = atol (status..table..mesg .proc-.id);

st..mesg..send(id, &status..table..mesg);

else if (strcmp (status.-t able-.mesg. msg-.header, "Updtstats") == 0){

100



"* This segment updates the status of the member
"* if the member is already present it updates the status
"* otherwise it adds the member and status in the tail of
"* list.

tempptr = headptr;
addressjfound = 0;
for ( loop-.index = 0;
loop-.index < status-view.number-of-entries; loop..index++){

if (strcmp( tempptr->memb..addr,
status-table~mesg.mesg-data [0].member~address) 0) f

strcpy(tempptr->member~status,
status..table..mesg .mesg-data [0]. member~status);
address-found = 1;
break;
I

else{
tempptr = tempptr->next;

"* if member is not already present add the member with
"* status specified.

if (address-.found == 0){
tempptr = (MembPtr) malloc( sizeof( StatusTableNode));
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;
strcpy (tempptr->memb..addr,
status...table-.mesg .mesg-.data[0] .member-address);
strcpy (tempptr->member..status,
status-.table-.mesg .mesg..data [0] .member-status);
status-view .number...of-entries++;

else if (strcmp (status.-t able..mesg. msg...header, "inittable") = 0){

"* this part of the program initialises the
"* list structure and generates the initial status table.

status..yitw.number-.of..entries = atoi(status-.table..mesg.num...mem);

101



"* create the list structure. make the
"* pointer to the first element the header

for (loop..indexl =0; loopjindexl < status~view.number-of-entries;
loop-.indexl++){

tempptr = (MembPtr) malloc( sizeof ( StatusTableNode));
if (loop..indexl ==) f

headptr =tempptr; /* head of the list *
tailptr =headptr; /* initial tail *

*copy the number of members iteratively.

strcpy (tempptr->memb..addr,
status-.table-.mesg.mesg..data[loop-.indexl] .member..address);
strcpy (tempptr->member..status,
status-.table-.mesg.mesg..data[loop..indexl] .member..status);
tempptr->next = NULL;
tailptr->next = tempptr;
tailptr = tempptr;

else if (strcmp(status-.table..mesg.msg..header , getmemadr")== 0 )

grpsize = status..view .number..of-.entries;

/* create the message from the list. Fill all the
*other data required f or the message to be sent.

tempptr = headptr;
ml 0;

*check the list to see if there is a match with the
*status given in the message to the status of members
*in the list. If a match is found add them to the meesage
*and increment the number of items in the message.

for (loop-index2 = 0; loop..index2 < grpsize; loop-.index2++){
if (strcmp( tempptr->member-.status,"failagree"l) == f

strcpy(status-.table..mesg.mesg...data [ml] .member-.address

102



tempptr->memb-.addr);
strcpy(status..table-mesg.mesg-data[mll .member-status
tempptr->member..status);

tempptr = tempptr->next;

else{
tempptr = tempptr->next;

status-table-mesg.num-mem[l] = ml%1O +48;
status-table-.mesg.nunL-mem[O] = (m1%100-ml%1O)/1O +48;
status-table-mesg .num-mem [2] = NULL;
status-.table-.mesg.mesg-type = atol(status-table-uesg.proc-id);
status-.table-.mesg.mesg-len = ml*19 + 17;
st..mesg..send(id, &status..table-mesg);

else if (st rcmp (st atus-t able -me sg -msg..header ,"statblreq")== 0 )

grpsize = status-view.number-of-entries;

"* integer to ascii conversion routine for number
"* of members .the string is a null terminated

status-.table-.mesg.num-.mem[l] = grpsize%10 +48;
status-.table-.mesg.num...mem[0] = (grpsize%100-grpsize%1O)/10 +48;
status-.table-.mesg .num..mem [2] NULL;

/* create the message from the list. Fill all the
*other data required for the message to be sent.

tempptr = headptr;
for (loop-.index2 = 0; loop-index2 < grpsize;
loop-index2++){

strcpy (
status..table-.mesg .mesg-.data[loop-.index2] .member-.address
tempptr->memb-.addr);
strcpy (
status-.table-.mesg.mesg-.data[loop-.index2] .member-.status
tempptr->member-status);
status-.table-.mesg.mesg-data[loop...index2] .member-.address[8]
NULL;
printf(' running in loop");
tempptrl = tempptr;

10:3



tempptr = tempptrl->next;}

status.table-mesg.mesg.type = atol(status.table-mesg.proc-id);
status-table-mesg.mesg-len = grpsize*19 + 17;
printf("message length =%d\n",status-table-mesg.mesg-len);
st.mesg.send(id, &statustable-mesg);

}i

else if (strcmp(status-table-mesg.msg-header, "removmemb") == 0) {

"* read in the members from the list and compare
"* with the member to be removed, if a match
"* is found then remove the member
"* change the link address so that the link is not broken*/

tempptr = headptr;

"* extract the member address portion from the list and
"* compare with the member to be removed. If there is no match
"* go to the next member till the complete list is covered.*/

for (loopindex = 0; loop-index < status.view.number-of-entries;
loop-index++) {

if (strcmp( tempptr->membaddr,
status-table.mesg.mesg-data[O].member.address) != 0) {

tempptrl = tempptr;
tempptr = tempptrl->next;

}

/*
* If the match is for the host( first member) remove host
* and update the pointer to the list

else if (loopindex ==) {
tempptr = headptr;
headptr = tempptr->next;
free (tempptr);
break;}

else {

104



1* If a match is found in the middle of the list change
*the link to reform the list.

tempptrl->next = tempptr->next;
free (tempptr);
if (tempptrl->next == NULL)

tailptr = tempptrl;
break;

tempptr = headptr;

for (loop..index3 =0; loop..index3 < status-view.number-of-entries;
loop-.index3++){

printf ("check for string %s\n", tempptr->memb-addr);
printf ("check for string %s\n", tempptr->member..status);
tempptrl =tempptr->next;
tempptr =tempptrl;

D. COMMIT PROCESS SERVER
#define TRUE 1
#define FALSE 0
#include <stdio .h>
#include "commesg .h"
#include "tkpmesg .h"
#include "gvmesg.h"
#include "stmesg.h"
#include "injoinmesg .h"
#include "msgq.h"

TKPMesg tkpmesg;
GVMesg gvmesg;
STMesg stmesg;
INJOINMesg injoin-.mesg;
COMMesg commit..mesg;
main 0

mnt comid, key;

1 05



*create and open the single message queue for commit processing.

if ((comid= msgget(COMMITQ,(PERMS I IPC.CREAT ))< 0)
err..sys("Commit-.process: can't msgget message queue")

key =1;

if (key ==)1)
Commit-process(comid);

exit (0);

Commit .process (comid)
mnt comid;

mnt n,nl,i, rank~.member, ml,rankpend;
char cl, temp[MAXMESGDATAI ,host~address [9] ,pending-member[91;
char my-.address[9], pending-status[10];
mnt tkpid,stid,gvid,commit..pend..process, new..token;

"* open the message queues for groupview server, tokenpool server
"* and status table server.

if ((tkpid= msgget(TKPSER, 0 ))< 0)
err..sys("Commit-.process: can't msgget tokenpool server queue")

if (( gvid= msgget(GVSER, 0 )) < 0 )
err..sys("Commit...process: can't msgget groupview server queue")

if (( tkpid= msgget(STSER, 0 )) < 0 )
err-.sys("Commit-.process: can't msgget stat table server queue");

1*if ( ( imjoinid= msgget(INJOINSER, 0 )) < 0 )
* err..sys("Commit-.process: can't msgget initiate join queue");

*wait for commit initiate message.

new-.token = TRUE;
commit-.pend-.process = FALSE;
commit-.mesg.mesg-.type = 1;
n= commit-.mesg..recv (comid, &commit..mesg);
if (n < 0 )

err..sys( "data read error');
while (new-.token I commit-.pend-.process){

commit-.pend-.process = FALSE;
new-.token = FALSE;

*send a query to token pool server to see if it a old token

106



"* fill in appropriate details f or tokenpool server can
"* receive the message

ni = getpido;

/* fill in the process id field in the message *

itoa(tkpmesg.proc-id , n1, 5);

/* fill in the message header and numbers field in the message *

strcpy(tkpmesg.msg-header, "tokenstat");
strcpy(tkpmesg.num-mem, "01");

/* fill in the token details in the message *

strcpy(tkpmesg.mesg-data[O1 .token-type,
commit-.mesg .mesg-.data token-type);
strcpy(tkpmesg.mesg.Aata[O] .initiator-address,
commit-mesg.mesg..data. initiator-address);
strcpy(tkpmesg.mesg-data[O] .member~address,
commit-.mesg. mesg...data .member-address);

tkpmesg.mesg-len=(28 + 17);

tkpmesg .mesg-type= 1L;

tkp-.mesg-.send(tkpid, &tkpmesg);

/* receive reply from tokenpool server

tkpmesg.mesg-.type = nlY.10000;
n= tkp-.mesg-recv(tkpid, &tkpmesg);
if (n < 0 )

err-.sys( "data read error");

if (strcmp(tkpmesg.msg..header, "njotpresnt")){

*send update tokenpool message to tokenpool server.

strcpy(tkpmesg.msg..header, "uptknpool");
tkp..mesg..send(tkpid, &tkpmesg);

*send update status table message to statustable server.

strcpy(stmesg.msg..header, "removmemb");

107



/* fill in the process id field in the message *

itoa(stmesg.proc-.id, n1, 5);

/* fill in the other fields in the message *

strcpy(stmesg.num-mem, "01");
strcpy(stmesg.mesg-data[0] .member-.address,
commit-.mesg .mesg-.data.member-.address);
strcpy(stmesg.mesg-.data[0] -member-..status, "removmemb");
stmesg.mesg-len=(19 + 17);
stmesg.mesg..type= 1L;

st-.mesg..send(stid, &stmesg);

*send update groupview message to groupview server.

if( strcmp(commit..mesg.mesg-.data.token-.type,"joincomit") ==0)

strcpy(gvmesg.msg..header, "Upadgview");
else

strcpy(gvmesg.msg..header, "Uprmgviewl");

/* fill in the process id field in the message *

itoa(gvmesg.proc-id, n1, 5);

/* fill in the other fields in the message *

strcpy(gvmesg.num..mem, "01");
strcpy(stmesg.mesg-.data[0] .member-.address,
commit..mesg .mesg-data.member-.address);
strcpy(gvmesg.vie~w.num, "0000"1);
gvmesg.mesg-.len=(12 + 22 )
gvmesg mesg-.type= 1L;

gview-.mesg-.send(gvid, &gvmesg);

*update the host address of the group.

strcpy(gvmesg.msg-.header, "hostaddrs");
gview-.mesg...send(gvid, &gvmesg);

gvmesg.mesg-.type = nl%10000;
n = gview-.mesg..recv(gvid, &gvmesg);

if (n < 0)
err..sys("data read error");

108



strcpy(host-address, gvmesg.mesg-datafiOJ.member-address);

/* the way to send tokens and updating the anticlockwise member
*is pending still

/* check to see if the running process is the host *

1*if(( strcmp(commit-mesg.mesg-data.token-type,"joincomit")) &
* ( strcmp(host-address, my-address))){

* * fill initiate join message with appropriate
* * values.

1* strcpy(injoin-mesg.msg-header,"sendinitp");
* ~injoin-mesg.mesg-.type = 1L;
* ~~strcpy (inj oin-mesg .member. address,
* ~~comxnit-mesg .mesg..data .member-address);
* injoin-mesg.mesg-len = 20;
*inj oin-mesg- send (inj oinid, &injoin-mesg);

*send check commit pending message to statustable server.

strcpy(stmesg.msg-header, "checkpend");

/* fill in the process id field in the message *

itoa(stmesg.proc-id , n1, 5);

1* fill in the other fields in the message *

strcpy(stmesg.nu~m.mem, "01");
strcpy(stmesg.mesg...data[0] .member-address,
commit-mesg .mesg-.data .member-address);
strcpy(stmesg.mesg-.data [01 -member-status, "failpendg");
stmesg.mesg-len=(19 + 17);
stmesg .mesg-.type= 1L;

st..mesg..send(stid, &stmesg);

stmesg.mesg-.type = nl%10000;
n= st-.mesg..recv(stid, &stmesg);
if (n < 0 )

err-.sys( "data read error");

if (atoi(stmesg.num-.mem) != 0){
commit-.pend-.process = TRUE;

109



strcpy(pending-.member,stmesg.mesg-data[0] .member-address);
strcpy(pending-.status ,stmesg.mesg~data[0] .member-status);
strcpy(gvmesg.mesg-data[01 .member-address,
pending-member);
strcpy(gvmesg msg-header, "rankmembr");
gvmesg.mesg type = 1L;
gview-mesg-send(gvid,&gvmesg);
gvmesg.mesg-.type = nl%10000;
n= gview-mesg..recv(gvid, &gvmesg);
if (n < 0 ) A

err-sys( "data read error");
rankpend = atoi(gvmesg.num-mem);

/* send a message to get the all agreement tokens *

strcpy(stmesg.msg-header, "getmemadr");

1* fill in the other fields in the message *

strcpy(stmesg.num-mem, "01");
strcpy (stmesg .mesg-data [01 .member-.address,
commit-.mesg .mesg-.data .member-address);
strcpy(stmesg .mesg-data[01 .member-status,
"failagree");
stmesg.mesg-.len=(19 + 17);
stmesg .mesg-.type= IL.

st-mesg..send(stid, &stmesg);

/* get a list of members who are agreed on failing *

stmesg.mesg-.type = nl%10000;
n= st..mesg-.recv(stid, &stmesg);
if (n < 0 )

err..sys( "data read error");

* this segment checks if there are other agree
* for failures member present.

if ( (strcmp(stmesg.num-.mem, '00") ==))

*this segment gets the rank of all
*members with a failure agree.

110



for( ml = 1; ml <= atoi(stmesg.num-mem); ml++ )
strcpy(gvmesg .mesg-.data[ml].
member~address, stmesg .mesg-data[mll.
member-address);

strcpy(gvmesg.msg-.header, "rankmembr");
gvmesg.mesg-.type = 1L;
gview-mesg-send(gvid ,&gvmesg);

gvmesg.mesg..type = nlYlOOOO;
n= gview-mesg-.recv(gvid, &gvmesg);
if (n <0 )
err..sys( "data read error");

for( ml = 1; ml <= atoi(stmesg.num-mem); ml++ )
rank-.member= atoa (gvmesg .mesg-.data [mil].member-rank);

if( rank-member < rankpend) f
commit-pen&..process = FALSE;
break;

if (commit-.pend-process){
strcpy (cominit-.mesg .mesg-.data .member~address,
pending-member);
strcpy(commit-nesg.mesg-.data. initiator~address,
my~address);
if ( strcmp(pending-status, "joinpendg") == 0)

strcpy(commit-mesg.mesg-data.token-type,"joincomit");
else

strcpy(commit..mesg.mesg-data.token-.type,"failcomit");

* send a message by using SysTEm V message queues.
* The mesg-len, mesg-.type and mesg-.data must be filled in by the
* caller

commit..mesg-.send(id ,mesgptr)
mnt id;



COMMesg *mesgptr;

*Send the message -the type followed by the optional data.

if (msgsnd(id, (char *)&(mesgptr->mesg-.type),
mesgptr->mesg-.len, 0) !=0)

err-.sys("msgsend error");

* receive a message by reading on a file descriptor.
* fill in the mesg-.len, mesg..type and mesg-data also

int
commit-.mesg-.recv(id, mesgptr)
mnt id;
COM~esg *mesgptr;

mnt n;

n = msgrcv(id, &(mesgptr->mesg-.type),MAXMESGDATA,
mesgptr->mesg-.type, 0);

if ((mesgptr->mesg-len = n )< 0)
err...sys("msgrcv error");

return(n);

112



REFERENCES

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. In ACM Transactions on Computer Systems, pages 272-
314, 1991.

[B+90] K. Birman et al. ISIS - A distributed Programming Environment (Pro-
grammers Manual). Department of Computer Science, Cornell University.
August 1990. Rev 2.1.

[BJ87] K.P. Birman and T.A. Joseph. Reliable communication in presence of fail-
ures. ACM Transactions on Computer Systems, pages 47-76. 1987.

[Bru85] S. Bruso. A failure detection and notification protocol for distributed com-
puting systems. In Proceedings IEEE Conference on Distributed Comput-
ing Systems, pages 116-123, 1985.

[CM189] Douglas Comer. Internetworking with TCP/IP. Prentice Hall software se-
ries. 1989.

[CM84] J.M. Chang and N.F. Maxemchuk. Reliable broadcast protocol. ACM
Transactions on Computer Systems, pages 251-273, 1984.

[Cri88] F. Cristain. Agreeing on who is present and who is absent in a synchronous
distributed system. In Proceedings of the 18th International Conference on
Fault Tolerant Computing, Tokyo, Japan, pages 206-211, 1988.a

[CT90] B.A. Coan and G. Thomas. Agreeing on a leader in real-time. In Proceed-
ings of the 11th Real-Time Systems Symposium, pages 166-172, December
1990.

[DSSI] S. Mullander. Distributed Systems. ACM press. 1990.

[EzLe90] P. D. Ezhilselvan and Rogerio de Lomos. A robust group membership algo-
rithm for distributed real-time systems. In Proceedings Real- Time Systems
Symposium, pages 173-179, 1990

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Peterson. Impossibility of distributed
consensus with one faulty process. Journal of the Assosiation of Computing
Machinery, pages 374-382, April 1985.

[LSA91] L.E. Moser, P.M. Melliar Smith, V. Agrawala. Membership algorithm for
asynchronous distributed systems. In Proceedings of the Eleventh Inter-
national Conference on Dependable Computing for Critical Applications,
Santa Barbara, CA , Pages 167-174. 1989.

[RB91] A. Ricardi and K. Birman. Using process groups to implement failure de-
tection in asynchronous environments. Technical Report TR91-1188, Cor-
nell University, February 1991.

113



[Roch] Steve Rochkind.Advanced UNIX programming. Prentice Hall software se-
ries. 1987.

[ShDr] S. Shukla and R. Devalla. Group Membership in Asynchronous Distributed
Systems using Logically Ordered Groups. Technical Report NPSEC-92-009
. Naval Postgraduate School. 1992

[SR90] W.R. Stevens. UNIX Network Programming. Prentice Hall software series.
1990.

[SUN] SUN. Network programming manual for SUNOS 4.1. 1990.

[STP] Software Through Pictures User's Manual. Interactive Development Envi-
ronment. San Francisco 1990.

114



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Director, Directorate of Training and Sponsored Research 4

Defense Research and Development Organisation.

Ministry of Defense

227 'B' Block . Sena Bhavan

New Delhi, INDIA 110011

3. Scientific Adviser to Raksha Mantri

Director General , Defense Research and Development Organisation.

Ministry of Defense

South Block

New Delhi, INDIA 110011

4. Director

Defense Electronics Research Laboratory.

Chandrayangutta Lines

Chandrayangutt.

Hyderabad, INDIA 500005

5. Dudley Knox Library

Code 52

Naval Postgraduate School

Monterey, CA 93943-5002

6. Chairman, Electronic Warfare Academic Group.

Code EW

Naval Postgraduate School

Monterey, CA 93943

115



7. Dr. Shridhar B Shukla

Code EC/Sh

Naval Postgraduate School

Monterey, CA 93943

8. Dr. Douglas J Fouts

Code EC/Fs

Naval Postgraduate School

Monterey, CA 93943

116


